51
|
Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:57-79. [PMID: 22956496 DOI: 10.1007/978-1-4419-9967-2_3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) is an oxidative product of 5-methylcytosine (5mC), catalyzed by the ten eleven translocation (TET) family of enzymes. Although 5hmC was discovered several decades ago, it was only after its recent identification in murine brain and stem cell DNA that it has become a major focus of epigenomic research. Part of the reason for this delay is due to the difficulty in detecting both global and locus-specific 5hmC levels. Several studies have addressed this issue with the development of novel techniques to locate and measure 5hmC, which led to multiple reports detailing 5hmC patterns in stem cells and global 5hmC levels during embryogenesis. Based on these studies of 5hmC levels and reports of tissue-specific TET expression, these enzymes are thought to play a role in mammalian development and differentiation. In addition, the TET enzymes are mutated in several types of cancer, affecting their activity and likely altering genomic 5hmC and 5mC patterns. Furthermore, oxidation of 5mC appears to be a step in several active DNA demethylation pathways, which may be important for normal processes, as well as global hypomethylation during cancer development and progression. Much has been revealed about this interesting DNA modification in recent years, but more research is needed for understanding the role of TET proteins and 5hmC in gene regulation and disease.
Collapse
|
52
|
Abstract
The concept of cancer as a stem cell disease has slowly gained ground over the last decade. A 'stem-like' state essentially necessitates that some cells in the developing tumor express the properties of remaining quiescent, self-renewing and regenerating tumors through establishment of aberrant cellular hierarchies. Alternatively, such capacities may also be reacquired through a de-differentiation process. The abnormal cellular differentiation patterns involved during either process during carcinogenesis are likely to be driven through a combination of genetic events and epigenetic regulation. The role(s) of the latter is increasingly being appreciated in acquiring the requisite genomic specificity and flexibility required for phenotypic plasticity, specifically in a context wherein genome sequences are not altered for differentiation to ensue. In this chapter, the recent advances in elucidating epigenetic mechanisms that govern the self-renewal, differentiation and regenerative potentials of cancer stem cells will be presented.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, 411 007, India,
| |
Collapse
|
53
|
Koide S, Wendt GR, Iwama A. Epigenetic regulation of hematopoietic stem cells. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
54
|
|
55
|
In aggressive forms of mastocytosis, TET2 loss cooperates with c-KITD816V to transform mast cells. Blood 2012; 120:4846-9. [PMID: 23074272 DOI: 10.1182/blood-2011-12-397588] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although a role for oncogenic KIT in driving mast cell disease is clear, the mechanisms driving the multiple phenotypic and clinical manifestations of this disorder are not well elucidated. We now show, using a large cohort of mastocytosis patients, including an almost equal number of aggressive and nonaggressive cases of systemic mastocytosis, that in contrast to the oncogenic KITD816V, TET2 mutation statistically associates with aggressive forms of the disease. By infecting primary murine bone marrow-derived mast cells with KITD816V, we also observe a significant and competitive growth advantage for KITD816V in Tet2-nullizygous compared with wild-type cells. TET2-deficient cells display increased proliferation and can survive in the absence of cytokines. Taken together, these data demonstrate a oncogenic cooperation in mast cells and reveal TET2 mutation as a potential marker to diagnose and predict severe forms of mastocytosis.
Collapse
|
56
|
Recurrent R-spondin fusions in colon cancer. Nature 2012; 488:660-4. [PMID: 22895193 DOI: 10.1038/nature11282] [Citation(s) in RCA: 777] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/06/2012] [Indexed: 12/15/2022]
Abstract
Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.
Collapse
|
57
|
Halachev K, Bast H, Albrecht F, Lengauer T, Bock C. EpiExplorer: live exploration and global analysis of large epigenomic datasets. Genome Biol 2012; 13:R96. [PMID: 23034089 PMCID: PMC3491424 DOI: 10.1186/gb-2012-13-10-r96] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/17/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
Epigenome mapping consortia are generating resources of tremendous value for studying epigenetic regulation. To maximize their utility and impact, new tools are needed that facilitate interactive analysis of epigenome datasets. Here we describe EpiExplorer, a web tool for exploring genome and epigenome data on a genomic scale. We demonstrate EpiExplorer's utility by describing a hypothesis-generating analysis of DNA hydroxymethylation in relation to public reference maps of the human epigenome. All EpiExplorer analyses are performed dynamically within seconds, using an efficient and versatile text indexing scheme that we introduce to bioinformatics. EpiExplorer is available at http://epiexplorer.mpi-inf.mpg.de.
Collapse
Affiliation(s)
- Konstantin Halachev
- Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbrücken, Germany
| | - Hannah Bast
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 51, 79110 Freiburg, Germany
| | - Felipe Albrecht
- Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbrücken, Germany
| | - Thomas Lengauer
- Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbrücken, Germany
| | - Christoph Bock
- Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbrücken, Germany
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
58
|
Hassler MR, Egger G. Epigenomics of cancer - emerging new concepts. Biochimie 2012; 94:2219-30. [PMID: 22609632 PMCID: PMC3480634 DOI: 10.1016/j.biochi.2012.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023]
Abstract
The complexity of the mammalian genome is regulated by heritable epigenetic mechanisms, which provide the basis for differentiation, development and cellular homeostasis. These mechanisms act on the level of chromatin, by modifying DNA, histone proteins and nucleosome density/composition. During the last decade it became clear that cancer is defined by a variety of epigenetic changes, which occur in early stages of disease and parallel genetic mutations. With the advent of new technologies we are just starting to unravel the cancer epigenome and latest mechanistic findings provide the first clue as to how altered epigenetic patterns might occur in different cancers. Here we review latest findings on chromatin related mechanisms and hypothesize how their impairment might contribute to the altered epigenome of cancer cells.
Collapse
Affiliation(s)
- Melanie R. Hassler
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Department of Internal Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Corresponding author. Tel.: +43 1 40400 6389; fax: +43 1 40400 5179.
| |
Collapse
|
59
|
Lu J, Kong X, Luo C, Li KK. Application of epigenome-modifying small molecules in induced pluripotent stem cells. Med Res Rev 2012; 33:790-822. [PMID: 22581616 DOI: 10.1002/med.21265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent breakthroughs in generating induced pluripotent stem cells (iPSCs) using four defined factors have revealed the potential utility of stem cells in biological research and clinical applications. However, the low efficiency and slow kinetics of reprogramming related to producing these cells and underlying safety issues, such as viral integration and genetic and epigenetic abnormalities of iPSCs, hamper the further application of iPSCs in laboratory and clinical settings. Previous studies have suggested that reprogramming efficiency can be enhanced and that reprogramming kinetics can be accelerated by manipulating epigenetic status. Herein, we review recent studies on the application of epigenome-modifying small molecules in enhancing reprogramming and functionally replacing some reprogramming factors. We mainly focus on studies that have used small molecules to interfere with epigenome-modifying enzymes, such as DNA methyltransferase, histone acetyltransferase, and histone methyltransferase. The potential use of these small molecules in inducing iPSCs and new ways to identify small molecules of higher potency and fewer side effects are also discussed.
Collapse
Affiliation(s)
- Junyan Lu
- Center for Systems Biology, School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | | | | | | |
Collapse
|
60
|
Zhang YX, Gao KR, Yu SY. [Progress of research on 5-hydroxymethylcytosine]. YI CHUAN = HEREDITAS 2012; 34:509-518. [PMID: 22659422 DOI: 10.3724/sp.j.1005.2012.00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
5-methylcytosine (5mC) in cytosine-guanine dinucleotide (CpG) is a usual epigenetic modification in mammals. It plays crucial roles in gene regulation, development, genomic imprinting and so on. In the last three years, it was discovered that in addition to 5mC, another modified cytosine base-5-hydroxymethylcytosine (5hmC) was abundant in many mammalian tissues, which may have different biological function from 5mC. This paper reviews the recent progresses in the studies of 5hmC.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | | | | |
Collapse
|
61
|
Verbrugge I, Johnstone RW, Bots M. Promises and challenges of anticancer drugs that target the epigenome. Epigenomics 2012; 3:547-65. [PMID: 22126246 DOI: 10.2217/epi.11.82] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The occurrence of epigenetic aberrations in cancer and their role in promoting tumorigenesis has led to the development of various small molecule inhibitors that target epigenetic enzymes. In preclinical settings, many epigenetic inhibitors demonstrate promising activity against a variety of both hematological and solid tumors. The therapeutic efficacy of those inhibitors that have entered the clinic however, is restricted predominantly to hematological malignancies. Here we outline the observed epigenetic aberrations in various types of cancer and the clinical responses to epigenetic drugs. We furthermore discuss strategies to improve the responsiveness of both hematological and solid malignancies to epigenetic drugs.
Collapse
Affiliation(s)
- Inge Verbrugge
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne 3002, Victoria, Australia
| | | | | |
Collapse
|
62
|
Gaidzik VI, Paschka P, Späth D, Habdank M, Köhne CH, Germing U, von Lilienfeld-Toal M, Held G, Horst HA, Haase D, Bentz M, Götze K, Döhner H, Schlenk RF, Bullinger L, Döhner K. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol 2012; 30:1350-7. [PMID: 22430270 DOI: 10.1200/jco.2011.39.2886] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The tet oncogene family member 2 (TET2) gene was recently identified to be mutated in myeloid disorders including acute myeloid leukemia (AML). To date, there is increasing evidence for a functional role of TET2 mutations (TET2(mut)) in AML. Thus, we explored the frequency, gene-expression pattern, and clinical impact of TET2(mut) in a large cohort of patients with AML in the context of other AML-associated aberrations. PATIENTS AND METHODS Samples from 783 younger adult patients with AML were analyzed for the presence of TET2(mut) (coding exons 3 to 11), and results were correlated with data from molecular genetic analyses, gene-expression profiling, and clinical outcome. RESULTS In total, 66 TET2(mut) were found in 60 patients (60 of 783 patients; 7.6%), including missense (n = 37), frameshift (n = 16), and nonsense (n = 13) mutations, which, with one exception, were all heterozygous. TET2(mut) were not correlated with distinct clinical features or genetic alterations, except for isocitrate dehydrogenase mutations (IDH(mut)) that were almost mutually exclusive with TET2(mut) (P < .001). TET2(mut) were characterized by only a weak gene-expression pattern, which, nevertheless, reflected TET2(mut)-associated biology. TET2(mut) did not impact the response to induction therapy and clinical outcome; the combination of patients who exhibited TET2(mut) and/or IDH(mut) revealed shorter overall survival (P = .03), although this association was not independent from known risk factors. CONCLUSION TET2(mut) were identified in 7.6% of younger adult patients with AML and did not impact the response to therapy and survival. Mutations were mutually exclusive with IDH(mut), which supported recent data on a common mechanism of action that might obscure the impact of TET2(mut) if compared against all other patients with AML.
Collapse
|
63
|
Abstract
Until recently, myeloid neoplasms have been attributed to genomic and genetic instability leading to clonal outgrowth. However, it is now increasingly evident that epigenetic abnormalities also play a fundamental role in development of these malignancies. A growing body of evidence has underlined the involvement of epigenetic machinery in the malignant transformation of hematopoietic cells. Epigenetic dysfunction can lead to genetic alterations, including microsatellite instability, nucleotide changes, and chromosomal alterations. Conversely, putative epigenetic instability may be related to mutations of genes involved in epigenetic regulation. Therefore, this review focuses on epigenetic processes, including DNA methylation, post-translational histone modifications, and RNA interference via small noncoding RNAs, which play a critical role in controlling gene expression and are targets of dysregulation in many hematologic malignancies. Further, recent literature identified somatic mutations in several epigenetic regulators with a high frequency in myeloid malignancies.
Collapse
Affiliation(s)
- Anna M Jankowska
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
64
|
Injury-dependent Müller glia and ganglion cell reprogramming during tissue regeneration requires Apobec2a and Apobec2b. J Neurosci 2012; 32:1096-109. [PMID: 22262907 DOI: 10.1523/jneurosci.5603-11.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike mammals, adult zebrafish are able to regenerate multiple tissues including those of the CNS. In the zebrafish retina, injury stimulates Müller glia dedifferentiation into a multipotent retinal progenitor that is capable of regenerating all lost cell types. This dedifferentiation is driven by the reactivation of gene expression programs that share many characteristics with those that operate during early development. Although the mechanisms underlying the reactivation of these programs remain unknown, it is likely that changes in DNA methylation play a significant role. To begin investigating whether DNA demethylation may contribute to retina regeneration, we characterized the expression of genes associated with DNA demethylation in the uninjured and injured retina. We found that two cytidine deaminases (apobec2a and apobec2b) were expressed basally in the uninjured retina and that they were induced in proliferating, dedifferentiated Müller glia. The maximal induction of apobec2b required Ascl1a, but was independent of Lin28, and therefore defines an independent signaling pathway stemming from Ascl1a. Strikingly, when Apobec2a or Apobec2b was knocked down by antisense morpholino oligonucleotides, the proliferative response of Müller glia following injury was significantly reduced and injury-dependent induction of ascl1a and its target genes were inhibited, suggesting the presence of a regulatory feedback loop between Apobec proteins and ascl1a. Finally, Ascl1a, Apobec2a and Apobec2b were found to be essential for optic nerve regeneration. These data identify an essential role for Apobec proteins during retina and optic nerve regeneration and suggest DNA demethylation may underlie the reprogramming of cells to mount a regenerative response.
Collapse
|
65
|
Abstract
Methylation of DNA and histones in chromatin has been implicated in numerous biological processes. For many years, methylation has been recognized as static and stable modification, as compared with other covalent modifications of chromatin. Recently, however, several mechanisms have been demonstrated to be involved in demethylation of chromatin, suggesting that chromatin methylation is more dynamically regulated. One chemical reaction that mediates demethylation of both DNA and histones is hydroxylation, catalysed by Fe(II) and α-ketoglutarate (KG)-dependent hydroxylase/dioxygenase. Given that methylation of chromatin is an important epigenetic mark involved in fundamental biological processes such as cell fate determination, understanding how chromatin methylation is dynamically regulated has implications for human diseases and regenerative medicine.
Collapse
Affiliation(s)
- Yu-ichi Tsukada
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
66
|
Tao S, Wang Z, Feng J, Hsu FC, Jin G, Kim ST, Zhang Z, Gronberg H, Zheng LS, Isaacs WB, Xu J, Sun J. A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants. Carcinogenesis 2012; 33:598-603. [PMID: 22219177 DOI: 10.1093/carcin/bgr316] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified ∼30 single-nucleotide polymorphisms (SNPs) consistently associated with prostate cancer (PCa) risk. To test the hypothesis that other sequence variants in the genome may interact with those 32 known PCa risk-associated SNPs identified from GWAS to affect PCa risk, we performed a systematic evaluation among three existing PCa GWAS populations: CAncer of the Prostate in Sweden population, a Johns Hopkins Hospital population, and the Cancer Genetic Markers of Susceptibility population, with a total sample size of 4723 PCa cases and 4792 control subjects. Meta-analysis of the interaction term between each of those 32 SNPs and SNPs in the genome was performed in three PCa GWAS populations. The most significant interaction detected was between rs12418451 in MYEOV and rs784411 in CEP152, with a P(interaction) of 1.15 × 10(-7) in the meta-analysis. In addition, we emphasized two pairs of interactions with potential biological implication, including an interaction between rs7127900 near insulin-like growth factor-2 (IGF2)/IGF2AS and rs12628051 in TNRC6B, with a P(interaction) of 3.39 × 10(-6) and an interaction between rs7679763 near TET2 and rs290258 in SYK, with a P(interaction) of 1.49 × 10(-6). Those results show statistical evidence for novel loci interacting with known risk-associated SNPs to modify PCa risk. The interacting loci identified provide hints on the underlying molecular mechanism of the associations with PCa risk for the known risk-associated SNPs. Additional studies are warranted to further confirm the interaction effects detected in this study.
Collapse
Affiliation(s)
- Sha Tao
- Center for Genetic Epidemiology and Prevention, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
La Starza R, Crescenzi B, Nofrini V, Barba G, Matteucci C, Brandimarte L, Pierini V, Testoni N, Musto P, Paolini S, Gianfelici V, Storlazzi CT, Pierini A, Berchicci L, Gorello P, Mecucci C. FISH analysis reveals frequent co-occurrence of 4q24/TET2 and 5q and/or 7q deletions. Leuk Res 2011; 36:37-41. [PMID: 21920603 DOI: 10.1016/j.leukres.2011.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
We investigated TET2 deletion in 418 patients with hematological malignancies. Overall interphase FISH detected complete or partial TET2 monoallelic deletion (TET2(del)) in 20/418 cases (4.7%). TET2(del) was very rare in lymphoid malignancies (1/242 cases; 0.4%). Among 19 positive myeloid malignancies TET2(del) was associated with a 4q24 karyotypic abnormality in 18 cases. In AML, TET2(del) occurred in CD34-positive hematopoietic precursors and preceded established genomic abnormalities, such as 5q- and -7/7q-, which were the most frequent associated changes (Fisher's exact test P=0.000).
Collapse
Affiliation(s)
- Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Kim YH, Pierscianek D, Mittelbronn M, Vital A, Mariani L, Hasselblatt M, Ohgaki H. TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations: Figure 1. J Clin Pathol 2011; 64:850-2. [DOI: 10.1136/jclinpath-2011-200133] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BackgroundMiscoding mutations of the TET2 gene, which encodes the α-ketoglutarate-dependent enzyme that catalyses the conversion of 5-methylcytosine to 5-hydroxymethylcytosine, thus producing DNA demethylation, have been detected in 10–25% of acute myeloid leukaemias lacking IDH1/2 mutations. Most low-grade diffuse gliomas carry IDH1/2 mutations (>85%), but molecular mechanisms of pathogenesis in those lacking IDH1/2 mutations remain to be elucidated.MethodsMiscoding mutations and promoter methylation of the TET2 gene were screened for in 29 low-grade diffuse gliomas lacking IDH1/2 mutations.ResultsSingle-strand conformational polymorphism followed by direct sequencing showed the absence of miscoding mutations in TET2. Methylation-specific PCR revealed methylation of the TET2 promoter in 5 of 35 cases (14%). In contrast, none of 38 low-grade diffuse gliomas with IDH1/2 mutations had TET2 promoter methylation (p=0.0216).ConclusionResults suggest that TET2 promoter methylation, but not TET2 mutation, may be an alternative mechanism of pathogenesis in a small fraction of low-grade diffuse gliomas lacking IDH1/2 mutations.
Collapse
|