51
|
Chen X, Zhang J, Yuan L, Lay Y, Wong YK, Lim TK, Ong CS, Lin Q, Wang J, Hua Z. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake. Molecules 2017; 22:molecules22091444. [PMID: 28858244 PMCID: PMC6151431 DOI: 10.3390/molecules22091444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Andrographolide (ADR), the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA) of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML) cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jianbin Zhang
- Department of Oncology, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Yifei Lay
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Chye Sun Ong
- Institute of Mental Health, Education Office, Singapore 539747, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Jigang Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, China.
| |
Collapse
|
52
|
Bruserud Ø, Aasebø E, Hernandez-Valladares M, Tsykunova G, Reikvam H. Therapeutic targeting of leukemic stem cells in acute myeloid leukemia - the biological background for possible strategies. Expert Opin Drug Discov 2017; 12:1053-1065. [PMID: 28748730 DOI: 10.1080/17460441.2017.1356818] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive malignancy, caused by the accumulation of immature leukemic blasts in blood and bone marrow. There is a relatively high risk of chemoresistant relapse even for the younger patients who can receive the most intensive antileukemic treatment. Treatment directed against the remaining leukemic and preleukemic stem cells will most likely reduce the risk of later relapse. Areas covered: Relevant publications were identified through literature searches. The authors searched for original articles and recent reviews describing (i) the characteristics of leukemic/preleukemic stem cells; (ii) the importance of the bone marrow stem cell niches in leukemogenesis; and (iii) possible therapeutic strategies to target the preleukemic/leukemic stem cells. Expert opinion: Leukemia relapse/progression seems to be derived from residual chemoresistant leukemic or preleukemic stem cells, and a more effective treatment directed against these cells will likely be important to improve survival both for patients receiving intensive treatment and leukemia-stabilizing therapy. Several possible strategies are now considered, including the targeting of the epigenetic regulation of gene expression, proapoptotic intracellular signaling, cell metabolism, telomere activity and the AML-supporting effects by neighboring stromal cells. Due to disease heterogeneity, the most effective stem cell-directed therapy will probably differ between individual patients.
Collapse
Affiliation(s)
- Øystein Bruserud
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Elise Aasebø
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,c Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Maria Hernandez-Valladares
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,c Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Galina Tsykunova
- b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Håkon Reikvam
- b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
53
|
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2017; 80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Citation(s) in RCA: 1268] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Increased reactive oxygen species (ROS) production has been detected in various cancers and has been shown to have several roles, for example, they can activate pro-tumourigenic signalling, enhance cell survival and proliferation, and drive DNA damage and genetic instability. Counterintuitively ROS can also promote anti-tumourigenic signalling, initiating oxidative stress-induced tumour cell death. Tumour cells express elevated levels of antioxidant proteins to detoxify elevated ROS levels, establish a redox balance, while maintaining pro-tumourigenic signalling and resistance to apoptosis. Tumour cells have an altered redox balance to that of their normal counterparts and this identifies ROS manipulation as a potential target for cancer therapies. This review discusses the generation and sources of ROS within tumour cells, the regulation of ROS by antioxidant defence systems, as well as the effect of elevated ROS production on their signalling targets in cancer. It also provides an insight into how pro- and anti-tumourigenic ROS signalling pathways could be manipulated in the treatment of cancer.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
54
|
Subcellular localization of the FLT3-ITD oncogene plays a significant role in the production of NOX- and p22phox-derived reactive oxygen species in acute myeloid leukemia. Leuk Res 2017; 52:34-42. [DOI: 10.1016/j.leukres.2016.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
|