51
|
Association Between Preinjury Symptoms and Postconcussion Symptoms at 4 Weeks in Youth. J Head Trauma Rehabil 2021; 37:E90-E101. [PMID: 33935222 DOI: 10.1097/htr.0000000000000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether preinjury physical, emotional, cognitive, and sleep symptoms on the Post-Concussion Symptoms Inventory (PCSI) are associated with persistent postconcussion symptoms (PPCS) at 4 weeks and whether any associations are moderated by sex or age. STUDY SETTING AND PARTICIPANTS A total of 3063 participants with acute concussion, presenting to 9 Canadian pediatric emergency departments, were enrolled from August 2013 to June 2015. DESIGN A planned secondary analysis of a prospective, multicenter cohort study (Predicting Persistent Post-concussive Problems in Pediatrics or 5P). Primary outcome was PPCS at 4 weeks, defined as 3 or more new or worsening individual symptoms compared with the preinjury score at 28 days on the PCSI. The association between preinjury scores and PPCS was analyzed with a multivariable logistic regression analysis that included preinjury, sex, age, sex × preinjury, and age × preinjury interactions as predictors. Missing baseline covariates were imputed. RESULTS A total of 2123 (n = 844 [39.8%] girls; median [IQR] age = 12.9 [10.7, 15.0] participants were included in the analysis. Preinjury physical symptom score was associated with PPCS at 4 weeks (χ2 = 13.87, df = 6, P = .031). The preinjury emotional score also contributed to the variability in PPCS (χ2 = 11.79, df = 6, P = .067). While girls reported higher preinjury physical, emotional, and cognitive scores than boys, neither sex nor age interacted with preinjury to predict PPCS at 4 weeks. Independent of age and sex, preinjury physical symptoms were associated with PPCS at 4 weeks (OR = 1.40; 95% CI, 1.15-1.70). CONCLUSION Preinjury physical symptoms are associated with the probability of having PPCS at 4 weeks postconcussion independent of age and sex. Providers should consider preinjury symptoms to inform prognosis and recovery management.
Collapse
|
52
|
Chizuk HM, Willer BS, Horn EC, Haider MN, Leddy JJ. Sex differences in the Buffalo Concussion Treadmill Test in adolescents with acute sport-related concussion. J Sci Med Sport 2021; 24:876-880. [PMID: 33992537 DOI: 10.1016/j.jsams.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The Buffalo Concussion Treadmill Test (BCTT) is a safe and validated tool to assess exercise tolerance after sport-related concussion (SRC). Sex differences may affect the interpretation of this systematic exertion test in the concussed population, which is important for clinicians. The purpose of this study was to examine sex differences in BCTT performance in adolescents with acute SRC. DESIGN Prospective cohort. METHODS Male (n = 103, 15.3 ± 2 years) and female (n = 87, 15.1 ± 2 years) adolescents with SRC performed the BCTT within 10 days of injury. Heart rate (HR), HR threshold (HRt), Delta HR (difference between resting HR and HRt), symptom severity on Visual Analog Scale (VAS) and symptoms exacerbated on the BCTT were collected and compared. RESULTS Males had lower resting HR (M: 70.9 ± 12 vs F: 75.7 ± 13 bpm, p < 0.01) and reached a lower HRt than females (M: 134.7 ± 23 vs F: 141.5 ± 25 bpm, p = 0.05). Sexes did not differ on Delta HR (M: 63.8 ± 26 vs F: 65.9 ± 24 bpm, p = 0.57), total treadmill time (M: 9.3 ± 5 vs F: 8.4 ± 4 min, p = 0.20), maximum VAS (M: 5.0 ± 2 vs F: 5.4 ± 2, p = 0.18) or incidence of a change in VAS (M: 91% vs F: 94%, p = 0.43) on the BCTT. CONCLUSIONS Although males may reach symptom exacerbation at a slightly lower mean HRt than females on the BCTT within 10 days of SRC, the BCTT provides comparable information and both sexes reach symptom exacerbation at similar Delta HR.
Collapse
Affiliation(s)
- Haley M Chizuk
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, United States of America; UBMD Orthopedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, United States of America.
| | - Barry S Willer
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, United States of America; Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, United States of America
| | - Emily C Horn
- UBMD Orthopedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, United States of America
| | - Mohammad N Haider
- UBMD Orthopedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, United States of America
| | - John J Leddy
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, United States of America; UBMD Orthopedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, United States of America
| |
Collapse
|
53
|
Wright DK, Symons GF, O'Brien WT, McDonald SJ, Zamani A, Major B, Chen Z, Costello D, Brady RD, Sun M, Law M, O'Brien TJ, Mychasiuk R, Shultz SR. Diffusion Imaging Reveals Sex Differences in the White Matter Following Sports-Related Concussion. Cereb Cortex 2021; 31:4411-4419. [PMID: 33860291 DOI: 10.1093/cercor/bhab095] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sports-related concussion (SRC) is a serious health concern. However, the temporal profile of neuropathophysiological changes after SRC and how these relate to biological sex are still poorly understood. This preliminary study investigated whether diffusion-weighted magnetic resonance imaging (dMRI) was sensitive to neuropathophysiological changes following SRC; whether these changes were sex-specific; and whether they persisted beyond the resolution of self-reported symptoms. Recently concussed athletes (n = 14), and age- and education-matched nonconcussed control athletes (n = 16), underwent MRI 24-48-h postinjury and again at 2-week postinjury (i.e., when cleared to return-to-play). Male athletes reported more symptoms and greater symptom severity compared with females. dMRI revealed white matter differences between athletes with SRC and their nonconcussed counterparts at 48-h postinjury. These differences were still present at 2-week postinjury, despite SRC athletes being cleared to return to play and may indicate increased cerebral vulnerability beyond the resolution of subjective symptoms. Furthermore, we identified sex-specific differences, with male SRC athletes having significantly greater white matter disruption compared with female SRC athletes. These results have important implications for the management of concussion, including guiding return-to-play decisions, and further improve our understanding regarding the role of sex in SRC outcomes.
Collapse
Affiliation(s)
- David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Brendan Major
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia.,Clinical Epidemiology, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Daniel Costello
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia.,Departments of Neurological Surgery and Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
54
|
Koerte IK, Esopenko C, Hinds SR, Shenton ME, Bonke EM, Bazarian JJ, Bickart KC, Bigler ED, Bouix S, Buckley TA, Choe MC, Echlin PS, Gill J, Giza CC, Hayes J, Hodges CB, Irimia A, Johnson PK, Kenney K, Levin HS, Lin AP, Lindsey HM, Lipton ML, Max JE, Mayer AR, Meier TB, Merchant-Borna K, Merkley TL, Mills BD, Newsome MR, Porfido T, Stephens JA, Tartaglia MC, Ware AL, Zafonte RD, Zeineh MM, Thompson PM, Tate DF, Dennis EL, Wilde EA, Baron D. The ENIGMA sports injury working group:- an international collaboration to further our understanding of sport-related brain injury. Brain Imaging Behav 2021; 15:576-584. [PMID: 32720179 PMCID: PMC7855299 DOI: 10.1007/s11682-020-00370-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor.
Collapse
Affiliation(s)
- Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität München, Waltherstr. 23, 80337, Munich, Germany.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Science, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sidney R Hinds
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elena M Bonke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität München, Waltherstr. 23, 80337, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Jeffrey J Bazarian
- Departments of Emergency Medicine & Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Kevin C Bickart
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Neurology and Neuropsychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Meeryo C Choe
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Pediatrics, Division of Neurology, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Paul S Echlin
- Elliott Sports Medicine Clinic, Burlington, ON, Canada
| | - Jessica Gill
- Department of Intramural Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Pediatrics, Division of Neurology, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jasmeet Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Michael L Lipton
- Departments of Radiology, Psychiatry and Behavioral Sciences and The Dominick P. Purpura Department of Neuroscience, The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Montefiore Medicine, Bronx, NY, USA
| | - Jeffrey E Max
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM, USA
- Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kian Merchant-Borna
- Departments of Emergency Medicine & Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Tricia L Merkley
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Brian D Mills
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Tara Porfido
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Jaclyn A Stephens
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| | - Maria Carmela Tartaglia
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross D Zafonte
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - David Baron
- Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
55
|
Bretzin AC, Covassin T, Wiebe DJ, Stewart W. Association of Sex With Adolescent Soccer Concussion Incidence and Characteristics. JAMA Netw Open 2021; 4:e218191. [PMID: 33904911 PMCID: PMC8080231 DOI: 10.1001/jamanetworkopen.2021.8191] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 01/02/2023] Open
Abstract
Importance Because of the negative consequences of concussion, considerable research efforts have been directed toward understanding the risk factors for sport-related concussion (SRC) and its outcomes to better inform strategies for risk reduction. Girls are suggested to have an increased risk of concussion, warranting exploration into sex-dependent variations in concussion presentation and management, with the potential that this information might inform sex-specific rules directed toward risk reduction within sports. Objective To compare sex-associated differences in epidemiology and concussion management in adolescent soccer players within a prospective, longitudinal high school injury surveillance project. Design, Setting, and Participants This prospective, longitudinal cohort study assessed male and female soccer athletes from all high schools in the Michigan High School Athletic Association (MHSAA) during academic years 2016-2017 to 2018-2019. Exposures Sport-related concussion captured in the MHSAA Head Injury Reporting System. Main Outcomes and Measures Outcomes included details regarding each documented SRC event, including injury mechanism, immediate management, and return-to-play time. Multiple comparisons were made between male and female athletes regarding SRC risk, mechanism, short-term management, and outcomes. Results A total of 43 741 male and 39 637 female soccer athletes participated in MHSAA soccer during the 3 consecutive academic years of study (2016-2017: n = 751 schools; 2017-2018: n = 750 schools; and 2018-2019: n = 747 schools). During the 3 years of surveillance, 1507 of the 83 378 soccer athletes (1.8%) were reported to have SRC during soccer participation, including 557 boys (37.0%) and 950 girls (63.0%). Documented SRC risk in female soccer participants was greater than in male soccer participants (risk ratio, 1.88; 95% CI, 1.69-2.09; P < .001). Male soccer athletes most often sustained SRC from contact with another player (48.4%), whereas SRCs in female soccer players recorded in the Head Injury Reporting System were most often from nonplayer contact events (41.9%; P < .001). Adolescent male soccer players with a documented SRC were more likely to be removed from play on the day of injury (odds ratio, 1.54; 95% CI, 1.15-2.06; P = .004). Although the overall median time to return to play was 11 days (interquartile range [IQR], 7-15 days), male athletes typically returned 2 days earlier than female athletes (median, 10 [IQR, 7-14] days vs 12 [IQR, 7-16] days; Peto test P < .001). Conclusions and Relevance In this cohort study, sex-associated differences were revealed among adolescent soccer athletes in SRC risk, mechanism of injury, immediate management, and outcomes in injuries documented in a statewide injury reporting system. Thus, consideration might be given to sex-specific approaches to participation and concussion management in the sport.
Collapse
Affiliation(s)
- Abigail C. Bretzin
- Penn Injury Science Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Tracey Covassin
- Department of Kinesiology, Michigan State University, East Lansing
| | - Douglas J. Wiebe
- Penn Injury Science Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
56
|
Valera EM, Joseph ALC, Snedaker K, Breiding MJ, Robertson CL, Colantonio A, Levin H, Pugh MJ, Yurgelun-Todd D, Mannix R, Bazarian JJ, Turtzo LC, Turkstra LS, Begg L, Cummings DM, Bellgowan PSF. Understanding Traumatic Brain Injury in Females: A State-of-the-Art Summary and Future Directions. J Head Trauma Rehabil 2021; 36:E1-E17. [PMID: 33369993 PMCID: PMC9070050 DOI: 10.1097/htr.0000000000000652] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this report, we identify existing issues and challenges related to research on traumatic brain injury (TBI) in females and provide future directions for research. In 2017, the National Institutes of Health, in partnership with the Center for Neuroscience and Regenerative Medicine and the Defense and Veterans Brain Injury Center, hosted a workshop that focused on the unique challenges facing researchers, clinicians, patients, and other stakeholders regarding TBI in women. The goal of this "Understanding TBI in Women" workshop was to bring together researchers and clinicians to identify knowledge gaps, best practices, and target populations in research on females and/or sex differences within the field of TBI. The workshop, and the current literature, clearly highlighted that females have been underrepresented in TBI studies and clinical trials and have often been excluded (or ovariectomized) in preclinical studies. Such an absence in research on females has led to an incomplete, and perhaps inaccurate, understanding of TBI in females. The presentations and discussions centered on the existing knowledge regarding sex differences in TBI research and how these differences could be incorporated in preclinical and clinical efforts going forward. Now, a little over 2 years later, we summarize the issues and state of the science that emerged from the "Understanding TBI in Women" workshop while incorporating updates where they exist. Overall, despite some progress, there remains an abundance of research focused on males and relatively little explicitly on females.
Collapse
Affiliation(s)
- Eve M Valera
- Departments of Psychiatry (Dr Valera) and Pediatrics and Emergency Medicine (Dr Mannix), Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts (Dr Valera and Ms Joseph); Department of Psychology, Suffolk University, Boston, Massachusetts (Ms Joseph); PINK Concussions, Norwalk, Connecticut (Ms Snedaker); Division of Injury Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia (Dr Breiding); US Public Health Service, Rockville, Maryland (Dr Breiding); Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (Dr Robertson); Rehabilitation Sciences Institute, Department of Occupational Science and Occupational Therapy, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada (Dr Colantonio); Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas (Dr Levin); Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas (Dr Levin); VA Salt Lake City Healthcare System, Salt Lake City, Utah (Drs Pugh and Yurgelun-Todd); Department of Medicine, University of Utah School of Medicine, Salt Lake City (Dr Pugh); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Dr Yurgelun-Todd); Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts (Dr Mannix); Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York (Dr Bazarian); Neuroscience Center (Drs Cummings and Bellgowan), National Institute of Neurological Disorders and Stroke (Dr Turtzo), and Office of Research on Women's Health, Office of the Director/DPCPSI (Dr Begg), National Institutes of Health, Bethesda, Maryland; and School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada (Dr Turkstra)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Master CL, Katz BP, Arbogast KB, McCrea MA, McAllister TW, Pasquina PF, Lapradd M, Zhou W, Broglio SP. Differences in sport-related concussion for female and male athletes in comparable collegiate sports: a study from the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium. Br J Sports Med 2020; 55:1387-1394. [PMID: 33355211 DOI: 10.1136/bjsports-2020-103316] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To examine sex differences in sport-related concussion (SRC) across comparable sports. METHODS Prospective cohort of collegiate athletes enrolled between 2014 and 2017 in the Concussion Assessment, Research and Education Consortium study. RESULTS Among 1071 concussions (females=615; 57.4%), there was no difference in recovery (median days to full return to play) (females=13.5 (IQR 9.0, 23.1) vs males=11.8 (IQR 8.1, 19.0), p=0.96). In subgroup analyses, female recovery was longer in contact (females=12.7 days (IQR 8.8, 21.4) vs males=11.0 days (IQR 7.9, 16.2), p=0.0021), while male recovery was longer in limited contact sports (males=16.9 days (IQR 9.7, 101.7) vs females=13.8 days (IQR 9.1, 22.0), p<0.0001). There was no overall difference in recovery among Division I schools (females=13.7 (IQR 9.0, 23.1) vs males=12.2 (IQR 8.2 19.7), p=0.5), but females had longer recovery at the Division II/III levels (females=13.0 (IQR 9.2, 22.7) vs males=10.6 (IQR 8.1, 13.9), p=0.0048). CONCLUSION Overall, no difference in recovery between sexes across comparable women's and men's sports in this collegiate cohort was found. However, females in contact and males in limited contact sports experienced longer recovery times, while females had longer recovery times at the Division II/III level. These disparate outcomes indicate that, while intrinsic biological sex differences in concussion recovery may exist, important, modifiable extrinsic factors may play a role in concussion outcomes.
Collapse
Affiliation(s)
- Christina L Master
- Orthopaedics and Sports Medicine, Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA .,Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Barry P Katz
- Biostatisics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael A McCrea
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thomas W McAllister
- Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul F Pasquina
- Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Michelle Lapradd
- Biostatisics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wenxian Zhou
- Biostatisics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
58
|
Shafi R, Poublanc J, Venkatraghavan L, Crawley AP, Sobczyk O, McKetton L, Bayley M, Chandra T, Foster E, Ruttan L, Comper P, Tartaglia MC, Tator CH, Duffin J, Mutch WA, Fisher J, Mikulis DJ. A Promising Subject-Level Classification Model for Acute Concussion Based on Cerebrovascular Reactivity Metrics. J Neurotrauma 2020; 38:1036-1047. [PMID: 33096952 DOI: 10.1089/neu.2020.7272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Concussion imaging research has primarily focused on neuronal disruption with lesser emphasis directed toward vascular dysfunction. However, blood flow metrics may be more sensitive than measures of neuronal integrity. Vascular dysfunction can be assessed by measuring cerebrovascular reactivity (CVR)-the change in cerebral blood flow per unit change in vasodilatory stimulus. CVR metrics, including speed and magnitude of flow responses to a standardized well-controlled vasoactive stimulus, are potentially useful for assessing individual subjects following concussion given that blood flow dysregulation is known to occur with traumatic brain injury. We assessed changes in CVR metrics to a standardized vasodilatory stimulus during the acute phase of concussion. Using a case control design, 20 concussed participants and 20 healthy controls (HCs) underwent CVR assessment measuring blood oxygen-level dependent (BOLD) magnetic resonance imaging using precise changes in end-tidal partial pressure of CO2 (PETCO2). Metrics were calculated for the whole brain, gray matter (GM), and white matter (WM) using sex-stratification. A leave-one-out receiver operating characteristic (ROC) analysis classified concussed from HCs based on CVR metrics. CVR magnitude was greater and speed of response faster in concussed participants relative to HCs, with WM showing higher classification accuracy compared with GM. ROC analysis for WM-CVR metrics revealed an area under the curve of 0.94 in males and 0.90 in females for speed and magnitude of response respectively. These greater than normal responses to a vasodilatory stimulus warrant further investigation to compare the predictive ability of CVR metrics against structural injury metrics for diagnosis and prognosis in acute concussion.
Collapse
Affiliation(s)
- Reema Shafi
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Larissa McKetton
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Lesley Ruttan
- Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Paul Comper
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Tanz Center for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Charles H Tator
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - James Duffin
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - W Alan Mutch
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph Fisher
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
59
|
Injury during adolescence leads to sex-specific executive function deficits in adulthood in a pre-clinical model of mild traumatic brain injury. Behav Brain Res 2020; 402:113067. [PMID: 33333110 DOI: 10.1016/j.bbr.2020.113067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Adolescents are more likely than adults to develop chronic symptoms, such as impulsivity and difficulty concentrating, following a mild traumatic brain injury (mTBI) which may relate to disruption of pre-frontal cortex (PFC development). During adolescence the PFC is undergoing extensive remodelling, driving maturation of executive functions incorporating attention, motivation and impulse control. In part maturation of the PFC is driven by outgrowth of dopaminergic neurons to the PFC under the guidance of specific axonal targeting cues, including netrin-1. How a mTBI in adolescence may alter the expression of these axonal targeting cues, and the influence on PFC development is not yet known. As such the effects of mTBI in mid-adolescence on executive functioning in adulthood (12 weeks) were examined via the 5-choice serial reaction task in both male and female Sprague Dawley rats. Animals at p35 (n = 12-16 per group) were injured via weight drop (100 g from 0.75 m) and injury confirmed by a significant increase in righting reflex. Interestingly, while a mid-adolescence mTBI in females led to significantly higher omissions and decreased accuracy when task difficulty was high (stimulus duration 1 s), males had significantly increased premature response rate when the intertrial interval was varied. Examination of levels of TH, as a reflection of dopaminergic innervation, found no difference in either gender post-TBI in the PFC, but a significant increase in the limbic system (nucleus accumbens) in males, but not females, chronically post-TBI, suggesting an imbalance between the regions. The increase in TH was accompanied by a chronic reduction in netrin-1 within the nucleus accumbens in males only. Taken together, these results indicate that mTBI in adolescence leads to sex specific effects in different domains of PFC function in adulthood, which may relate to subtle alterations in the developmental trajectory of the mesocortical limbic pathway in males only.
Collapse
|
60
|
Hoffman AN, Watson SL, Makridis AS, Patel AY, Gonzalez ST, Ferguson L, Giza CC, Fanselow MS. Sex Differences in Behavioral Sensitivities After Traumatic Brain Injury. Front Neurol 2020; 11:553190. [PMID: 33324313 PMCID: PMC7724082 DOI: 10.3389/fneur.2020.553190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with high rates of post-injury psychiatric and neurological comorbidities. TBI is more common in males than females despite females reporting more symptoms and longer recovery following TBI and concussion. Both pain and mental health conditions like anxiety and post-traumatic stress disorder (PTSD) are more common in women in the general population, however the dimorphic comorbidity in the TBI population is not well-understood. TBI may predispose the development of maladaptive anxiety or PTSD following a traumatic stressor, and the impact of sex on this interaction has not been investigated. We have shown that white noise is noxious to male rats following fluid percussion injury (FPI) and increases fear learning when used in auditory fear conditioning, but it is unclear whether females exhibit a similar phenotype. Adult female and male rats received either lateral FPI or sham surgery and 48 h later received behavioral training. We first investigated sex differences in response to 75 dB white noise followed by white noise-signaled fear conditioning. FPI groups exhibited defensive behavior to the white noise, which was significantly more robust in females, suggesting FPI increased auditory sensitivity. In another experiment, we asked how FPI affects contextual fear learning in females and males following unsignaled footshocks of either strong (0.9 mA) or weaker (0.5 mA) intensity. We saw that FPI led to rapid acquisition of contextual fear compared to sham. A consistent pattern of increased contextual fear after TBI was apparent in both sexes across experiments under differing conditioning protocols. Using a light gradient open field task we found that FPI females showed a defensive photophobia response to light, a novel finding supporting TBI enhanced sensory sensitivity across modalities in females. General behavioral differences among our measures were observed between sexes and discussed with respect to interpretations of TBI effects for each sex. Together our data support enhanced fear following a traumatic stressor after TBI in both sexes, where females show greater sensitivity to sensory stimuli across multiple modalities. These data demonstrate sex differences in emergent defensive phenotypes following TBI that may contribute to comorbid PTSD, anxiety, and other neurological comorbidities.
Collapse
Affiliation(s)
- Ann N Hoffman
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sonya L Watson
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anna S Makridis
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anisha Y Patel
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sarah T Gonzalez
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lindsay Ferguson
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Christopher C Giza
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States.,Division of Neurology, Department of Pediatrics, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, CA, United States
| | - Michael S Fanselow
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Science, Los Angeles, CA, United States
| |
Collapse
|
61
|
Abstract
Female athletes are participating in collision sports in greater numbers than previously. The overall incidence of concussion is known to be higher in female athletes than in male athletes participating in similar sports. Evidence suggests anatomic, biomechanical, and biochemical etiologies behind this sex disparity. Future research on female athletes is needed for further guidance on prevention and management of concussion in girls and women.
Collapse
|
62
|
Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, Grill WM. Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci 2020; 14:601479. [PMID: 33250710 PMCID: PMC7672126 DOI: 10.3389/fnins.2020.601479] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
It is necessary to understand the morphology of the vagus nerve (VN) to design and deliver effective and selective vagus nerve stimulation (VNS) because nerve morphology influences fiber responses to electrical stimulation. Specifically, nerve diameter (and thus, electrode-fiber distance), fascicle diameter, fascicular organization, and perineurium thickness all significantly affect the responses of nerve fibers to electrical signals delivered through a cuff electrode. We quantified the morphology of cervical and subdiaphragmatic VNs in humans, pigs, and rats: effective nerve diameter, number of fascicles, effective fascicle diameters, proportions of endoneurial, perineurial, and epineurial tissues, and perineurium thickness. The human and pig VNs were comparable sizes (∼2 mm cervically; ∼1.6 mm subdiaphragmatically), while the rat nerves were ten times smaller. The pig nerves had ten times more fascicles-and the fascicles were smaller-than in human nerves (47 vs. 7 fascicles cervically; 38 vs. 5 fascicles subdiaphragmatically). Comparing the cervical to the subdiaphragmatic VNs, the nerves and fascicles were larger at the cervical level for all species and there were more fascicles for pigs. Human morphology generally exhibited greater variability across samples than pigs and rats. A prior study of human somatic nerves indicated that the ratio of perineurium thickness to fascicle diameter was approximately constant across fascicle diameters. However, our data found thicker human and pig VN perineurium than those prior data: the VNs had thicker perineurium for larger fascicles and thicker perineurium normalized by fascicle diameter for smaller fascicles. Understanding these differences in VN morphology between preclinical models and the clinical target, as well as the variability across individuals of a species, is essential for designing suitable cuff electrodes and stimulation parameters and for informing translation of preclinical results to clinical application to advance the therapeutic efficacy of VNS.
Collapse
Affiliation(s)
- Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Gabriel B. Goldhagen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jake E. Cariello
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Eric D. Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kara A. Clissold
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Ashley Ezzell
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University, Durham, NC, United States
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
63
|
Covassin T, McGowan AL, Bretzin AC, Anderson M, Petit KM, Savage JL, Katie SL, Elbin RJ, Pontifex MB. Preliminary investigation of a multimodal enhanced brain function index among high school and collegiate concussed male and female athletes. PHYSICIAN SPORTSMED 2020; 48:442-449. [PMID: 32228157 DOI: 10.1080/00913847.2020.1745717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: The primary purpose of this study was to examine the longitudinal effects of sports-related concussion (SRC) on a multi-faceted assessment battery which included neuropsychological testing, symptom reporting, and enhanced brain function index (eBFI) among athletes with and without SRC. A secondary purpose was to explore longitudinal sex differences among these measures in athletes with and without SRC. Methods: A case-control, repeated-measures design was used for this study. A total of 186 athletes (concussed group:n= 87 controls:n= 99) participated in the study. A repeated-measures design was used in which each athlete was tested at four time points following an SRC: within 72 h of injury (Day 0; 2.0 ± 0.9 days following injury), 5 days following injury (Day 5; 5.0 ± 0.0), at return to play (RTP; 18.3 ± 13.8 days following injury), and within 45 days following RTP (RTP45; 66.2 ± 19.0 days following injury). All analyses were conducted separately using a 2 (Group: concussed, control) × 2 (Sex: male, female) × 4 (Time:Day 0, Day 5, RTP, RTP45) univariate multi-level model including the random intercept for each participant. A higher eBFI score indicates a better performance. Alpha level was set aprior at .05. This study was registered on clinicaltrials.gov (Objective Brain Function Assessment of mTBI/Concussion in College/high school Athletes NCT02477943, NCT02661633, CAS 13-25 NCT03963804). Results: Concussed athletes exhibited impaired eBFI within 72 h of SRC and at Day 5 compared to controls (p<.001). Analysis of eBFI scores between male and female athletes revealed a main effect of sex (p=.05), with female athletes exhibiting lower eBFI (33.9 ± 30.7) relative to male athletes (40.4 ± 33.0), however, it did not indicate interactions between sex, group, and time (p's ≥ 0.786). Conclusion: The eBFI appears to be a useful tool in determining concussed athletes during the acute stages of an SRC. However, this index may lack the sensitivity to detect sex-related differences between groups at various time points during recovery.
Collapse
Affiliation(s)
- Tracey Covassin
- Department of Kinesiology, Michigan State University , East Lansing, MI, USA
| | - Amanda L McGowan
- Department of Kinesiology, Michigan State University , East Lansing, MI, USA
| | - Abigail C Bretzin
- Penn Injury Science Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania , Philadelphia, PA, USA
| | - Morgan Anderson
- Department of Kinesiology, Michigan State University , East Lansing, MI, USA
| | - Kyle Michael Petit
- Department of Kinesiology, Michigan State University , East Lansing, MI, USA
| | - Jennifer L Savage
- Rudy School of Nursing and Health Professions, Cumberland University , Lebanon, TN, USA
| | - Stephenson L Katie
- Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, AR, USA
| | - R J Elbin
- Department of Health, Human Performance and Recreation, University of Arkansas , Fayetteville, AR, USA
| | | |
Collapse
|
64
|
Krishna G, Bromberg C, Connell EC, Mian E, Hu C, Lifshitz J, Adelson PD, Thomas TC. Traumatic Brain Injury-Induced Sex-Dependent Changes in Late-Onset Sensory Hypersensitivity and Glutamate Neurotransmission. Front Neurol 2020; 11:749. [PMID: 32849211 PMCID: PMC7419702 DOI: 10.3389/fneur.2020.00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Women approximate one-third of the annual 2.8 million people in the United States who sustain traumatic brain injury (TBI). Several clinical reports support or refute that menstrual cycle-dependent fluctuations in sex hormones are associated with severity of persisting post-TBI symptoms. Previously, we reported late-onset sensory hypersensitivity to whisker stimulation that corresponded with changes in glutamate neurotransmission at 1-month following diffuse TBI in male rats. Here, we incorporated intact age-matched naturally cycling females into the experimental design while monitoring daily estrous cycle. We hypothesized that sex would not influence late-onset sensory hypersensitivity and associated in vivo amperometric extracellular recordings of glutamate neurotransmission within the behaviorally relevant thalamocortical circuit. At 28 days following midline fluid percussion injury (FPI) or sham surgery, young adult Sprague-Dawley rats were tested for hypersensitivity to whisker stimulation using the whisker nuisance task (WNT). As predicted, both male and female rats showed significantly increased sensory hypersensitivity to whisker stimulation after FPI, with females having an overall decrease in whisker nuisance scores (sex effect), but no injury and sex interaction. In males, FPI increased potassium chloride (KCl)-evoked glutamate overflow in primary somatosensory barrel cortex (S1BF) and ventral posteromedial nucleus of the thalamus (VPM), while in females the FPI effect was discernible only within the VPM. Similar to our previous report, we found the glutamate clearance parameters were not influenced by FPI, while a sex-specific effect was evident with female rats showing a lower uptake rate constant both in S1BF and VPM and longer clearance time (in S1BF) in comparison to male rats. Fluctuations in estrous cycle were evident among brain-injured females with longer diestrus (low circulating hormone) phase of the cycle over 28 days post-TBI. Together, these findings add to growing evidence indicating both similarities and differences between sexes in a chronic response to TBI. A better understanding of the influence of gonadal hormones on behavior, neurotransmission, secondary injury and repair processes after TBI is needed both clinically and translationally, with potential impact on acute treatment, rehabilitation, and symptom management.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Caitlin Bromberg
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Emily Charlotte Connell
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Erum Mian
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P. David Adelson
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
65
|
Phelps A, Mez J, Stern RA, Alosco ML. Risk Factors for Chronic Traumatic Encephalopathy: A Proposed Framework. Semin Neurol 2020; 40:439-449. [PMID: 32674182 DOI: 10.1055/s-0040-1713633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that has been neuropathologically diagnosed in contact and collision sport athletes, military veterans, and others with a history of exposure to repetitive head impacts (RHI). Identifying methods to diagnose and prevent CTE during life is a high priority. Timely diagnosis and implementation of treatment and preventative strategies for neurodegenerative diseases, including CTE, partially hinge upon early and accurate risk characterization. Here, we propose a framework of risk factors that influence the neuropathological development of CTE. We provide an up-to-date review of the literature examining cumulative exposure to RHI as the environmental trigger for CTE. Because not all individuals exposed to RHI develop CTE, the direct and/or indirect influence of nonhead trauma exposure characteristics (e.g., age, sex, race, genetics) on the pathological development of CTE is reviewed. We conclude with recommendations for future directions, as well as opinions for preventative strategies that could mitigate risk.
Collapse
Affiliation(s)
- Alyssa Phelps
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
66
|
Jgamadze D, Johnson VE, Wolf JA, Cullen DK, Song H, Ming GL, Smith DH, Chen HI. Modeling traumatic brain injury with human brain organoids. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:52-58. [PMID: 35434439 PMCID: PMC9009274 DOI: 10.1016/j.cobme.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) remains a prominent public health concern despite several decades of attempts to develop therapies for the associated neurological and cognitive deficits. Effective models of this condition are imperative for better defining its pathophysiology and testing therapeutics. Human brain organoids are stem cell-derived neural tissues that recapitulate many of the steps of normal neurodevelopment, resulting in the reproduction of a substantial degree of brain architecture. Organoids are highly relevant to clinical conditions because of their human nature and three-dimensional tissue structure, yet they are easier to manipulate and interrogate experimentally than animals. Thus, they have the potential to serve as a novel platform for studying TBI. In this article, we discuss available in vitro models of TBI, active areas of inquiry on brain organoids, and how these two concepts could be merged.
Collapse
Affiliation(s)
- Dennis Jgamadze
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
67
|
Kolberg K, Saleem N, Ambrose M, Cranford J, Almeida A, Ichesco I, Schellpfeffer N, Hashikawa A. Pediatric Head Injuries in Summer Camps. Clin Pediatr (Phila) 2020; 59:369-374. [PMID: 31976762 DOI: 10.1177/0009922819901009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summer camps have a unique supervisory environment that may lead to increased head injury risk for children. The epidemiology of head injuries in camps is unclear. We partnered with CampDoc.com to review head injury reports from camp nurses in 2016 from 197 camps in 36 states. A total of 4290 (92%) reports were coded as definite head injuries, 47% (n = 2002) in female campers, with median camper age of 10 years. Head injury severity was coded as mild (94%, n = 4040), moderate (6%, n = 248), or severe (<1%, n = 2). Only 3% (n = 134) were medically evaluated, and 29% (n = 1221) were sports-related. Head injuries were categorized as definite (3%, n = 137) and probable (13%, n = 572) concussions, with 39% (n = 277) being sports-related and 61% (n = 83) of definite concussions incurred by female campers. Summer camps, while an important location of head injury risk, appear to be a safe environment for youth.
Collapse
|
68
|
Tétreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C. Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. Neuroimage 2020; 210:116533. [PMID: 31935520 DOI: 10.1016/j.neuroimage.2020.116533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Conventional diffusion imaging uses pulsed gradient spin echo (PGSE) waveforms with diffusion times of tens of milliseconds (ms) to infer differences of white matter microstructure. The combined use of these long diffusion times with short diffusion times (<10 ms) enabled by oscillating gradient spin echo (OGSE) waveforms can enable more sensitivity to changes of restrictive boundaries on the scale of white matter microstructure (e.g. membranes reflecting the axon diameters). Here, PGSE and OGSE images were acquired at 4.7 T from 20 healthy volunteers aged 20-73 years (10 males). Mean, radial, and axial diffusivity, as well as fractional anisotropy were calculated in the genu, body and splenium of the corpus callosum (CC). Monte Carlo simulations were also conducted to examine the relationship of intra- and extra-axonal radial diffusivity with diffusion time over a range of axon diameters and distributions. The results showed elevated diffusivities with OGSE relative to PGSE in the genu and splenium (but not the body) in both males and females, but the OGSE-PGSE difference was greater in the genu for males. Females showed positive correlations of OGSE-PGSE diffusivity difference with age across the CC, whereas there were no such age correlations in males. Simulations of radial diffusion demonstrated that for axon sizes in human brain both OGSE and PGSE diffusivities were dominated by extra-axonal water, but the OGSE-PGSE difference nonetheless increased with area-weighted outer-axon diameter. Therefore, the lack of OGSE-PGSE difference in the body is not entirely consistent with literature that suggests it is composed predominantly of axons with large diameter. The greater OGSE-PGSE difference in the genu of males could reflect larger axon diameters than females. The OGSE-PGSE difference correlation with age in females could reflect loss of smaller axons at older ages. The use of OGSE with short diffusion times to sample the microstructural scale of restriction implies regional differences of axon diameters along the corpus callosum with preliminary results suggesting a dependence on age and sex.
Collapse
Affiliation(s)
- Pascal Tétreault
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kevin D Harkins
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Corey A Baron
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Rob Stobbe
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mark D Does
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
69
|
Shum C, Dutan L, Annuario E, Warre-Cornish K, Taylor SE, Taylor RD, Andreae LC, Buckley NJ, Price J, Bhattacharyya S, Srivastava DP. Δ 9-tetrahydrocannabinol and 2-AG decreases neurite outgrowth and differentially affects ERK1/2 and Akt signaling in hiPSC-derived cortical neurons. Mol Cell Neurosci 2020; 103:103463. [PMID: 31917333 DOI: 10.1016/j.mcn.2019.103463] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Endocannabinoids regulate different aspects of neurodevelopment. In utero exposure to the exogenous psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC), has been linked with abnormal cortical development in animal models. However, much less is known about the actions of endocannabinoids in human neurons. Here we investigated the effect of the endocannabinoid 2-arachidonoyl glycerol (2AG) and Δ9-THC on the development of neuronal morphology and activation of signaling kinases, in cortical neurons derived from human induced pluripotent stem cells (hiPSCs). Our data indicate that the cannabinoid type 1 receptor (CB1R), but not the cannabinoid 2 receptor (CB2R), GPR55 or TRPV1 receptors, is expressed in young, immature hiPSC-derived cortical neurons. Consistent with previous reports, 2AG and Δ9-THC negatively regulated neurite outgrowth. Interestingly, acute exposure to both 2AG and Δ9-THC inhibited phosphorylation of serine/threonine kinase extracellular signal-regulated protein kinases (ERK1/2), whereas Δ9-THC also reduced phosphorylation of Akt (aka PKB). Moreover, the CB1R inverse agonist SR 141716A attenuated the decrease in neurite outgrowth and ERK1/2 phosphorylation induced by 2AG and Δ9-THC. Taken together, our data suggest that hiPSC-derived cortical neurons express CB1Rs and are responsive to exogenous cannabinoids. Thus, hiPSC-neurons may represent a good cellular model for investigating the role of the endocannabinoid system in regulating cellular processes in developing human neurons.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Emily Annuario
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Samuel E Taylor
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Centre for Developmental Neurobiology, King's College London, London, UK
| | - Ruth D Taylor
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Centre for Developmental Neurobiology, King's College London, London, UK
| | - Laura C Andreae
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Centre for Developmental Neurobiology, King's College London, London, UK
| | | | - Jack Price
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; National Institute for Biological Standards and Control, South Mimms, UK
| | | | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
70
|
Cutting to the Pathophysiology Chase: Translating Cutting-Edge Neuroscience to Rehabilitation Practice in Sports-Related Concussion Management. J Orthop Sports Phys Ther 2019; 49:811-818. [PMID: 31154951 DOI: 10.2519/jospt.2019.8884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mild traumatic brain injury, or concussion, is a common sports injury. Concussion involves physical injury to brain tissue and vascular and axonal damage that manifests as transient and often nonspecific clinical symptoms. Concussion diagnosis is challenging, and the relationship between brain injury and clinical symptoms is unclear. The purpose of this commentary was to translate cutting-edge neuroscience to rehabilitation practice. We (1) highlight potential biomarkers that may improve our understanding of concussion and its recovery, (2) explain why researchers must address the paucity of concussion research in female athletes, and (3) present female-specific factors that should be accounted for in future studies. Integrating objective, quantitative measures of concussion pathophysiology with concussion history, genetics, and genomics will help caregivers identify concussed athletes, tailor recovery protocols, and protect athletes from potential long-term effects of cumulative head impact. J Orthop Sports Phys Ther 2019;49(11):811-818. Epub 1 Jun 2019. doi:10.2519/jospt.2019.8884.
Collapse
|
71
|
Wilde EA, Newsome MR, Ott SD, Hunter JV, Dash P, Redell J, Spruiell M, Diaz M, Chu ZD, Goodrich-Hunsaker N, Petrie J, Li R, Levin H. Persistent Disruption of Brain Connectivity after Sports-Related Concussion in a Female Athlete. J Neurotrauma 2019; 36:3164-3171. [PMID: 31119974 DOI: 10.1089/neu.2019.6377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Structural and functional connectivity (FC) after sports-related concussion (SRC) may remain altered in adolescent athletes despite symptom resolution. Little is known, however, about how alterations in structural connectivity and FC co-present in female athletes whose symptom recovery tends to be prolonged. Despite resolution of symptoms, one month after her second SRC, an 18-year-old female athlete had decreased structural connectivity in the corpus callosum and cingulum, with altered FC near those regions, compared with other SRC and orthopedically injured athletes. Findings show persistent effects of SRC on advanced brain imaging and the possibility of greater vulnerability of white matter tracts in females.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, Texas.,Baylor College of Medicine, Houston, Texas.,University of Utah, Salt Lake City, Utah.,George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Mary R Newsome
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, Texas.,Baylor College of Medicine, Houston, Texas
| | - Summer D Ott
- University of Texas, Health Science Center at Houston - UTHealth, Houston, Texas
| | - Jill V Hunter
- Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Pramod Dash
- University of Texas, Health Science Center at Houston - UTHealth, Houston, Texas
| | - John Redell
- University of Texas, Health Science Center at Houston - UTHealth, Houston, Texas
| | | | - Marlene Diaz
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, Texas.,Baylor College of Medicine, Houston, Texas
| | - Zili D Chu
- Baylor College of Medicine, Houston, Texas
| | | | | | - Ruosha Li
- University of Texas, Health Science Center at Houston - UTHealth, Houston, Texas
| | - Harvey Levin
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, Texas.,Baylor College of Medicine, Houston, Texas
| |
Collapse
|
72
|
Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J Neurotrauma 2019; 36:3063-3091. [PMID: 30794028 PMCID: PMC6818488 DOI: 10.1089/neu.2018.6171] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing recognition of the problem of male bias in neuroscience research, including in the field of traumatic brain injury (TBI) where fewer women than men are recruited to clinical trials and male rodents have predominantly been used as an experimental injury model. Despite TBI being a leading cause of mortality and disability worldwide, sex differences in pathophysiology and recovery are poorly understood, limiting clinical care and successful drug development. Given growing interest in sex as a biological variable affecting injury outcomes and treatment efficacy, there is a clear need to summarize sex differences in TBI. This scoping review presents an overview of current knowledge of sex differences in TBI and a comparison of human and animal studies. We found that overall, human studies report worse outcomes in women than men, whereas animal studies report better outcomes in females than males. However, closer examination shows that multiple factors including injury severity, sample size, and experimental injury model may differentially interact with sex to affect TBI outcomes. Additionally, we explore how sex differences in mitochondrial structure and function might contribute to possible sex differences in TBI outcomes. We propose recommendations for future investigations of sex differences in TBI, which we hope will lead to improved patient management, prognosis, and translation of therapies from bench to bedside.
Collapse
Affiliation(s)
- Raeesa Gupte
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - William Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Clinical and Translational Sciences Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel Vukas
- School of Medicine, Dykes Library of Health Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Janet Pierce
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janna Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- Address correspondence to: Janna Harris, PhD, Hoglund Brain Imaging Center, MS 1052, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
73
|
Abstract
Over the past 2 decades, concussion care is increasingly in demand as research and media attention shed light on the importance of proper diagnosis and medical management to prevent complex, potentially disabling sequelae. The purpose of this review is to discuss the future of clinical concussion care across selected topics under the broad themes of diagnosis/assessment, intervention/treatment, and patient characteristics/presentations with the intent to direct clinicians' attention to important anticipated developments in the field. The current status of biomarkers, clinical settings, models of clinical concussion, return-to-activity, clinical subpopulations, treatment approaches, patient perceptions of injury, and social media are reviewed along with predictions for future developments.
Collapse
Affiliation(s)
- Aliyah R Snyder
- David Geffen School of Medicine, University of California, Los Angeles, CA.
| | - Christopher C Giza
- David Geffen School of Medicine, University of California, Los Angeles, CA; Department of Pediatrics, David Geffen School of Medicine and UCLA Mattel Children's Hospital, University of California, Los Angeles, CA
| |
Collapse
|
74
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
75
|
Putukian M, D'Alonzo BA, Campbell-McGovern CS, Wiebe DJ. The Ivy League-Big Ten Epidemiology of Concussion Study: A Report on Methods and First Findings. Am J Sports Med 2019; 47:1236-1247. [PMID: 30943078 DOI: 10.1177/0363546519830100] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Little is known about the nature of concussion injury among university student-athletes, including concussion incidence and rates across sports, the mechanisms of injury, the type of activity during competition or practice, and the time to return to academics, return to sport, and symptom resolution. PURPOSE To describe methods of the Ivy League-Big Ten Epidemiology of Concussion Study and first epidemiologic findings. STUDY DESIGN Descriptive epidemiology study. METHODS A prospective cohort study was conducted with data accrued through a surveillance system that was launched in the 2013-2014 athletic season. Surveillance continues to operate by detecting and collecting sport-related concussion (SRC) cases and non-SRC cases in addition to outcomes among university student-athletes. RESULTS A total of 1922 cases of SRC (649 women, 1004 men) among athletes from 27 sports, including varsity sports and club rugby, were enrolled during the 5 athletic seasons from 2013-2014 through 2017-2018. American football had the most cases (n = 495, 25.8%), followed by women's rugby (n = 199, 6.2%), men's ice hockey (n = 106, 5.5%), men's lacrosse (n = 105, 5.5%), women's soccer (n = 103, 5.4%), wrestling (n = 93, 4.8%), and men's soccer (n = 89, 4.6%), and women's ice hockey (n = 78, 4.1%). The highest overall concussion rates occurred in women's lacrosse (1.35 concussions per 1000 athletic exposures [AEs]) and football (1.26 per 1000 AEs). Rates of concussion were generally higher during competition than practice and were highest during wrestling competition (4.06 per 1000 AEs) and second highest during football competition (3.68 per 1000 AEs). The median number of concussion symptoms was 7. Time to symptom resolution was longer for athletes with ≥7 symptoms versus <7 ( P < .001) but did not differ across the 4 sports with rules comparable by sex and did not differ significantly between women and men (median, 8 vs 9 days, respectively). Women and men did not differ in days to return to academics, exertion activities, or competition. CONCLUSION This multisite collaborative endeavor has produced a robust database yielding novel opportunities to better understand the epidemiology of concussion among university student-athletes participating in a variety of sports. Given the setting and number of cases, these findings add to our understanding of SRC and are the first of many that will be generated over the coming years from this large study that continues in its sixth year.
Collapse
Affiliation(s)
- Margot Putukian
- Athletic Medicine, Princeton University, Princeton, New Jersey, USA
| | - Bernadette A D'Alonzo
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Douglas J Wiebe
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
76
|
Merritt VC, Padgett CR, Jak AJ. A systematic review of sex differences in concussion outcome: What do we know? Clin Neuropsychol 2019; 33:1016-1043. [PMID: 30618335 DOI: 10.1080/13854046.2018.1508616] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: The purpose of this review was to examine sex differences in concussion, or mild traumatic brain injury (mTBI) outcome, updating previous critical reviews of the literature. Method: Within adult human studies, we reviewed a wide range of concussion outcome variables: prevalence of concussion, injury characteristics, postconcussion symptom trajectories and psychiatric distress, neuropsychological performance, and neuroimaging findings. Sports-related concussion, civilian, and military samples were included in the review. Results: Given the robust concussion literature, there is a relative paucity of research addressing sex differences following concussion. The majority of available studies focused on sports-related concussion, with fewer studies targeting other civilian causes of concussion or military-related concussion in females. Prevalence of concussion was generally reported to be higher in females than males. Although symptom reporting largely showed a pattern for females to report greater overall symptoms than males, examining individual symptoms or symptom clusters resulted in mixed findings between the sexes. Neuropsychological studies generally showed females performing more poorly than males on measures of visual memory following concussion, though this finding was not consistently reported. Conclusion: Research examining sex differences in humans following concussion, in general, is in its infancy, and exploration of sex differences in studies outside of the sports concussion domain is particularly nascent. Given the increased prevalence of concussion and potential higher symptom reporting among women, ongoing research is necessary to better understand the role of biological sex on outcome following concussion. Understanding sex differences has important implications for assessment, management, and treatment of concussion.
Collapse
Affiliation(s)
| | - Christine R Padgett
- b School of Medicine (Psychology), University of Tasmania , Hobart , TAS , Australia
| | - Amy J Jak
- a VA San Diego Healthcare System , San Diego , CA , USA.,c University of California San Diego (UCSD) School of Medicine, Department of Psychiatry , La Jolla , CA , USA
| |
Collapse
|
77
|
Scimone MT, Cramer III HC, Bar-Kochba E, Amezcua R, Estrada JB, Franck C. Modular approach for resolving and mapping complex neural and other cellular structures and their associated deformation fields in three dimensions. Nat Protoc 2018; 13:3042-3064. [DOI: 10.1038/s41596-018-0077-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Giza CC, Stewart W, Prins ML. Building Good Policy From Good Science-The Case for Concussion and Chronic Traumatic Encephalopathy. JAMA Pediatr 2018; 172:803-804. [PMID: 29987335 PMCID: PMC6537904 DOI: 10.1001/jamapediatrics.2018.1645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher C Giza
- Steve Tisch BrainSPORT Program, David Geffen School of Medicine and Mattel Children's Hospital, University of California, Los Angeles
- David Geffen School of Medicine and Mattel Children's Hospital, University of California, Los Angeles
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Mayumi L Prins
- Steve Tisch BrainSPORT Program, David Geffen School of Medicine and Mattel Children's Hospital, University of California, Los Angeles
- David Geffen School of Medicine and Mattel Children's Hospital, University of California, Los Angeles
| |
Collapse
|