51
|
Yang M, Zhu L, Li L, Li J, Xu L, Feng J, Liu Y. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus ( Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2017; 8:80. [PMID: 28197160 PMCID: PMC5281601 DOI: 10.3389/fpls.2017.00080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/13/2017] [Indexed: 05/21/2023]
Abstract
The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3'-hydroxylase (NMCH), and 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This transcriptomic database provides new directions for future studies on clarifying the aporphine alkaloid pathway.
Collapse
Affiliation(s)
- Mei Yang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Lingping Zhu
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Department of Agricultural Sciences, Viikki Plant Science Center, University of HelsinkiHelsinki, Finland
| | - Ling Li
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Juanjuan Li
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Liming Xu
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ji Feng
- Tobacco Research Institute of Hubei ProvinceWuhan, China
| | - Yanling Liu
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- *Correspondence: Yanling Liu
| |
Collapse
|
52
|
Sharma BR, Gautam LNS, Adhikari D, Karki R. A Comprehensive Review on Chemical Profiling ofNelumbo Nucifera: Potential for Drug Development. Phytother Res 2016; 31:3-26. [DOI: 10.1002/ptr.5732] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/28/2016] [Accepted: 09/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| | - Lekh Nath S. Gautam
- C. Eugene Bennett Department of Chemistry; West Virginia University; Morgantown WV 26506 USA
| | | | - Rajendra Karki
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| |
Collapse
|
53
|
Sun SS, Gugger PF, Wang QF, Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.). PeerJ 2016; 4:e2369. [PMID: 27635336 PMCID: PMC5012265 DOI: 10.7717/peerj.2369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.
Collapse
Affiliation(s)
- Shan-Shan Sun
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science , Frostburg, Maryland , USA
| | - Qing-Feng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences , Wuhan , China
| | - Jin-Ming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences , Wuhan , China
| |
Collapse
|
54
|
Yi Y, Sun J, Xie J, Min T, Wang LM, Wang HX. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties. Molecules 2016; 21:molecules21070863. [PMID: 27376256 PMCID: PMC6273286 DOI: 10.3390/molecules21070863] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/14/2023] Open
Abstract
Lotus root attracts increasing attention mainly because of its phenolic compounds known as natural antioxidants. Its thirteen varieties were systematically analyzed on the content, distribution, composition and antioxidant activity of phenolic compounds for a better understanding of this aquatic vegetable. The respective mean contents of total phenolics in their flesh, peel and nodes were 1.81, 4.30 and 7.35 mg gallic acid equivalents (GAE)/g fresh weight (FW), and those of total flavonoids were 3.35, 7.69 and 15.58 mg rutin equivalents/g FW. The phenolic composition determined by a high-performance liquid chromatography method varied significantly among varieties and parts. The phenolics of flesh were mainly composed of gallocatechin and catechin; those of peel and node were mainly composed of gallocatechin, gallic acid, catechin and epicatechin. The antioxidant activities of phenolic extracts in increasing order were flesh, peel and node; their mean concentrations for 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical were 46.00, 26.43 and 21.72 µg GAE/mL, and their mean values representing ferric reducing antioxidant power were 75.91, 87.66 and 100.43 µg Trolox equivalents/100 µg GAE, respectively. “Zoumayang”, “Baheou”, “No. 5 elian” and “Guixi Fuou” were the hierarchically clustered varieties with relatively higher phenolic content and stronger antioxidant activity as compared with the others. Especially, their nodes and peels are promising sources of antioxidants for human nutrition.
Collapse
Affiliation(s)
- Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Engineering Research Center for Fresh Food, Wuhan 430023, China.
| | - Jie Sun
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jun Xie
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Engineering Research Center for Fresh Food, Wuhan 430023, China.
| | - Li-Mei Wang
- Hubei Engineering Research Center for Fresh Food, Wuhan 430023, China.
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Hong-Xun Wang
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Engineering Research Center for Fresh Food, Wuhan 430023, China.
| |
Collapse
|
55
|
Li X, Jackson A, Xie M, Wu D, Tsai WC, Zhang S. Proteomic insights into floral biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1050-60. [PMID: 26945514 DOI: 10.1016/j.bbapap.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China; International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China.
| | | | - Ming Xie
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China.
| | - Dianxing Wu
- International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, New York 14853, USA
| |
Collapse
|
56
|
Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages. Food Chem 2015; 185:159-64. [DOI: 10.1016/j.foodchem.2015.03.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 02/06/2023]
|
57
|
Deng J, Fu Z, Chen S, Damaris RN, Wang K, Li T, Yang P. Proteomic and Epigenetic Analyses of Lotus (Nelumbo nucifera) Petals Between Red and White cultivars. PLANT & CELL PHYSIOLOGY 2015; 56:1546-55. [PMID: 26019267 DOI: 10.1093/pcp/pcv077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 05/22/2023]
Abstract
Lotus is a vital aquatic ornamental plant with different flower colors. To explore the flower coloration mechanism in lotus, the constituents and contents of pigments in two lotus cultivars with red and white flowers were analyzed. Although flavones and flavonols were detected in both cultivars, anthocyanins could only be detected in the red cultivar. A comparative proteomics analysis on the flower petals between these two cultivars was conducted. A total of 88 differentially expressed proteins were identified with 36 more abundant and 52 less abundant in the red than in the white cultivar. Among them, four enzymes involved in the anthocyanin pathway were identified, i.e. flavanone 3-hydroxylase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase and glutathione S-transferase. Analysis of the expression patterns of anthocyanin biosynthetic genes indicated that the anthocyanindin synthase (ANS) gene might be the critical gene determining anthocyanin biosynthesis and accumulation in lotus flower. Further analysis showed that different methylation intensities on the promoter sequence of the ANS gene might result in the different flower coloration in the red and white cultivar. This study provides new insights into the mechanism of flower coloration in lotus, and may be helpful in its breeding and germplasm enhancement.
Collapse
Affiliation(s)
- Jiao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ziyang Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tingting Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
58
|
Huang M, Zhang Y, Xu S, Xu W, Chu K, Xu W, Zhao H, Lu J. Identification and quantification of phenolic compounds in Vitex negundo L. var. cannabifolia (Siebold et Zucc.) Hand.-Mazz. using liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometers. J Pharm Biomed Anal 2015; 108:11-20. [DOI: 10.1016/j.jpba.2015.01.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 01/16/2023]
|
59
|
Wang K, Deng J, Damaris RN, Yang M, Xu L, Yang P. LOTUS-DB: an integrative and interactive database for Nelumbo nucifera study. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav023. [PMID: 25819075 PMCID: PMC4383347 DOI: 10.1093/database/bav023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Besides its important significance in plant taxonomy and phylogeny, sacred lotus (Nelumbo nucifera Gaertn.) might also hold the key to the secrets of aging, which attracts crescent attentions from researchers all over the world. The genetic or molecular studies on this species depend on its genome information. In 2013, two publications reported the sequencing of its full genome, based on which we constructed a database named as LOTUS-DB. It will provide comprehensive information on the annotation, gene function and expression for the sacred lotus. The information will facilitate users to efficiently query and browse genes, graphically visualize genome and download a variety of complex data information on genome DNA, coding sequence (CDS), transcripts or peptide sequences, promoters and markers. It will accelerate researches on gene cloning, functional identification of sacred lotus, and hence promote the studies on this species and plant genomics as well. Database URL: http://lotus-db.wbgcas.cn
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Deng
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Liming Xu
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
60
|
Noysang C, Mahringer A, Zeino M, Saeed M, Luanratana O, Fricker G, Bauer R, Efferth T. Cytotoxicity and inhibition of P-glycoprotein by selected medicinal plants from Thailand. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:633-641. [PMID: 24929106 DOI: 10.1016/j.jep.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thai medicine has a long tradition of tonifying medicinal plants. In the present investigation, we studied the flower extracts of Jasminum sambac, Mammea siamensis, Mesua ferrea, Michelia alba, Mimusops elengi, and Nelumbo nucifera and speculated that these plants might influence metabolism and substance flow in the body. MATERIALS AND METHODS Isolation of porcine brain capillary endothelial cells (PBCECs) as well as multidrug-resistance CEM/ADR5000 leukemia cells, MDA-M;B-231 breast cancer, U-251 brain tumor, and HCT-116 colon cancer cells were used. The calcein-acetoxymethylester (AM) assay was used to measure inhibition of P-glycoprotein transport. XTT and resazurin assays served for measuring cytotoxicity. RESULTS The extracts revealed cytotoxicity towards CCRF-CEM leukemia cells to a different extent. The strongest growth inhibition was found for the n-hexane extracts of Mammea siamensis and Mesua ferrea, and the dichloromethane extracts of Mesua ferrea and Michelia alba. The flower extracts also inhibited P-glycoprotein function in porcine brain capillary endothelial cells and CEM/ADR5000 leukemia cells, indicating modulation of the blood-brain barrier and multidrug resistance of tumors. Bioactivity-guided isolation of coumarins from Mammea siamensis flowers revealed considerable cytotoxicity of mammea A/AA, deacetylmammea E/BA and deacetylmammea E/BB towards human MDA-MB-231 breast cancer, U-251 brain tumor, HCT-116 colon cancer, and CCRF-CEM leukemia cells. CONCLUSION The plants analyzed may be valuable in developing novel treatment strategies to overcome the blood-brain barrier and multidrug-resistance in tumor cells mediated by P-glycoprotein.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Brain/blood supply
- Brain/drug effects
- Cell Line, Tumor
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Flowers
- Humans
- Medicine, East Asian Traditional
- Neoplasms/drug therapy
- Neoplasms/pathology
- Plant Extracts/pharmacology
- Plants, Medicinal/chemistry
- Swine
- Thailand
Collapse
Affiliation(s)
- Chanai Noysang
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University Graz, Graz, Austria; Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Thai Traditional Medicine College, Rajamangala University of Technology Thayaburi, Phathumthani, Thailand
| | - Anne Mahringer
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Maen Zeino
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed Saeed
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Omboon Luanratana
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University Graz, Graz, Austria
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|