51
|
The role of bacterial cellulose loaded with plant phenolics in prevention of UV-induced skin damage. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
52
|
Influence of Phenolic-Food Matrix Interactions on In Vitro Bioaccessibility of Selected Phenolic Compounds and Nutrients Digestibility in Fortified White Bean Paste. Antioxidants (Basel) 2021; 10:antiox10111825. [PMID: 34829697 PMCID: PMC8614679 DOI: 10.3390/antiox10111825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
This model study aimed to evaluate the effect of phenolic–food matrix interactions on the in vitro bioaccessibility and antioxidant activity of selected phenolic compounds (gallic acid, ferulic acid, chlorogenic acid, quercetin, apigenin, and catechin) as well as protein and starch digestibility in fortified white bean paste. The magnitude of food matrix effects on phenolics bioaccessibility and antioxidant activity was estimated based on “predicted values” and “combination indexes”. Furthermore, the protein–phenolics interactions were investigated using electrophoretic and chromatographic techniques. The results demonstrated phenolic–food matrix interactions, in most cases, negatively affected the in vitro bioaccessibility and antioxidant activity of phenolic compounds as well as nutrient digestibility. The lowest in vitro bioaccessibility of phenolic compounds in fortified paste was found for quercetin (45.4%). The most negative impact on the total starch digestibility and relative digestibility of proteins was observed for catechin–digestibility lower by 14.8%, and 21.3% (compared with control), respectively. The observed phenolic–food matrix interactions were strictly dependent on the applied phenolic compound, which indicates the complex nature of interactions and individual affinity of phenolic compounds to food matrix components. In conclusion, phenolic–food matrix interactions are an important factor affecting the nutraceutical and nutritional potential of fortified products.
Collapse
|
53
|
Dridi W, Bordenave N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydr Polym 2021; 274:118670. [PMID: 34702486 DOI: 10.1016/j.carbpol.2021.118670] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/21/2023]
Abstract
Non-covalent interactions between polysaccharides and phenolics affect the physical properties of polysaccharide solutions. These interactions may in turn be influenced by polysaccharide-polysaccharide interactions. To test this hypothesis, we studied the influence of polysaccharide concentration (with guar, β-glucans, and xanthan) on the variations of rheological and water-binding properties upon addition of phenolics compounds (vanillin, caffeic acid, gallic acid, and epigallocatechin gallate). Addition of phenolics led to increased flow behavior index and decreased flow consistency index, with maximum effects at polysaccharide concentrations ranging between 0.6 × C* and 1.4 × C*, where C* is the critical overlap concentration of each polysaccharide. Water mobility was generally not significantly influenced by the addition of phenolics. The results showed that the ability of phenolic compounds to induce aggregation of polysaccharides in solution was strongly influenced by polysaccharide concentration around C* and therefore by polysaccharide-polysaccharide interactions.
Collapse
Affiliation(s)
- Wafa Dridi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada; School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Canada.
| |
Collapse
|
54
|
Tran T, Grandvalet C, Winckler P, Verdier F, Martin A, Alexandre H, Tourdot-Maréchal R. Shedding Light on the Formation and Structure of Kombucha Biofilm Using Two-Photon Fluorescence Microscopy. Front Microbiol 2021; 12:725379. [PMID: 34421883 PMCID: PMC8371556 DOI: 10.3389/fmicb.2021.725379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Kombucha pellicles are often used as inoculum to produce this beverage and have become a signature feature. This cellulosic biofilm produced by acetic acid bacteria (AAB) involves yeasts, which are also part of the kombucha consortia. The role of microbial interactions in the de novo formation and structure of kombucha pellicles was investigated during the 3 days following inoculation, using two-photon microscopy coupled with fluorescent staining. Aggregated yeast cells appear to serve as scaffolding to which bacterial cellulose accumulates. This initial foundation leads to a layered structure characterized by a top cellulose-rich layer and a biomass-rich sublayer. This sublayer is expected to be the microbiologically active site for cellulose production and spatial optimization of yeast–AAB metabolic interactions. The pellicles then grow in thickness while expanding their layered organization. A comparison with pellicles grown from pure AAB cultures shows differences in consistency and structure that highlight the impact of yeasts on the structure and properties of kombucha pellicles.
Collapse
Affiliation(s)
- Thierry Tran
- UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Cosette Grandvalet
- UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pascale Winckler
- UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France.,INRA, INSERM, Dimacell Imaging Facility, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | | | | | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
55
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
56
|
Lohtander T, Grande R, Österberg M, Laaksonen P, Arola S. Bioactive Films from Willow Bark Extract and Nanocellulose Double Network Hydrogels. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.708170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the protection of sensitive components from external threats relies on the combination of physical barriers and bioactive secondary metabolites. Polyphenols and phenols are active molecules that protect organisms from physical and chemical threats such as UV irradiation and oxidative stress. The utilization of biopolymers and natural bioactive phenolic components as protective coating layers in packaging solutions would enable easier recyclability of materials and greener production process compared with the current plastic-based products. Herein, we produce a fully wood-based double network material with tunable bioactive and optical properties consisting of nanocellulose and willow bark extract. Willow bark extract, embedded in nanocellulose, was cross-linked into a polymeric nanoparticle network using either UV irradiation or enzymatic means. Based on rheological analysis, atomic force microscopy, antioxidant activity, and transmittance measurements, the cross-linking resulted in a double network gel with enhanced rheological properties that could be casted into optically active films with good antioxidant properties and tunable oxygen barrier properties. The purely biobased, sustainably produced, bioactive material described here broadens the utilization perspectives for wood-based biomass, especially wood-bark extractives. This material has potential in applications where biodegradability, UV shielding, and antioxidant properties of hydrogels or thin films are needed, for example in medical, pharmaceutical, food, and feed applications, but also as a functional barrier coating in packaging materials as the hydrogel properties are transferred to the casted and dried films.
Collapse
|
57
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules 2021; 26:molecules26154400. [PMID: 34361554 PMCID: PMC8347997 DOI: 10.3390/molecules26154400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/24/2023] Open
Abstract
The objective of this study was to investigate the use of citrus fiber as a carrier of blackberry juice polyphenols. For that purpose, freeze-dried complexes with blackberry juice and different amounts of citrus fiber (1%, 2% and 4%) were prepared. Complexes were evaluated spectrophotometrically for total polyphenols, proanthocyanidins and antioxidant activity. Analyses of individual polyphenols were performed using high-performance liquid chromatography. IR spectra were recorded to confirm encapsulation. All analyses were performed after preparation and after eight months of storage, in order to examine the stability of formed complexes. The obtained results indicated that increasing the amount of fiber led to a decrease in the concentration of polyphenols and the antioxidant activity of complexes. Cyanidin 3-glucoside was the prevalent anthocyanin in complexes (138.32–246.45 mg/100 g), while cyanidin 3-dioxalylglucoside was present at lower concentrations (22.19–31.45 mg/100 g). The other identified and quantified polyphenols were hesperidin (from citrus fiber), ellagic acid and quercetin (1317.59–1571.65 mg/100 g, 31.94–50.11 mg/100 g and 20.11–33.77 mg/100 g, respectively). Degradation of polyphenols occurred during storage. Results obtained in this study confirmed that citrus fiber could be used for the formulation of novel bioactive additives. Such additives could enhance the antioxidant potential of products to which they are added, such as baked goods, dairy, or fruit products.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
- Correspondence:
| |
Collapse
|
58
|
Mokgehle TM, Madala N, Gitari WM, Tavengwa NT. Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications. Carbohydr Polym 2021; 264:118049. [PMID: 33910751 DOI: 10.1016/j.carbpol.2021.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Biopolymers are renowned for their sustainable, biodegradable, biocompatible and most of them have antitoxic characteristics. These versatile naturally derived compounds include proteins, polynucleotides (RNA and DNA) and polysaccharides. Cellulose and chitosan are the most abundant polysaccharides. Proteins and polysaccharides have been applied as emulsifiers. Additional applications of proteins and polysaccharides include cosmetics, food and wastewater treatment for adsorption of dyes and pesticides. However, more interesting applications of biopolymers are emerging, such as use in transport systems for delivery of plant derived nutraceuticals to sites of inflammation, due to its inherent ability to immobilize different biological and chemical systems. This review aims to give a summary on new trends and complement what is already known in the development of polysaccharides and proteins as adsorbents of nutraceutical compounds. The application of polysaccharides/protein containing the adsorbed Solanum derived nutraceutical compounds for drug deliveryis also reviewed.
Collapse
Affiliation(s)
- Tebogo Mphatlalala Mokgehle
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Wilson Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
59
|
Impact of phenolic compound as activators or inhibitors on the enzymatic hydrolysis of cellulose. Int J Biol Macromol 2021; 186:174-180. [PMID: 34252461 DOI: 10.1016/j.ijbiomac.2021.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
The influence of phenolic compounds on the enzymatic hydrolysis of cellulose was studied in depth using spectrophotometric techniques, adsorption analysis and Scanning Electron Microscopy (SEM). In this paper for the first time, both possible interactions between phenolic compounds and the enzyme or the substrate were investigated, with the use of various phenolic compounds, cellulase from T. reesei, and Avicel as cellulose source. Three classes of phenolic compounds have been identified, based on their effect on the hydrolysis of cellulose: inhibitors (quercetin, kaempferol, trans-cinnamic acid, luteolin, ellagic acid), non-inhibitors (p-coumaric acid, rutin, caffeic acid), and activators (ferulic acid, syringic acid, sinapic acid, vanillic acid). Secondly, since various structures of phenolic compounds were tested, a structure - action comprehensive correlation was possible leading to the conclusion that an -OCH3 group was necessary for the activating effect. Finally, based on the adsorption spectra and unique SEM images, a different way of adsorption (either on the enzyme or on the substrate) was noticed, depending on the activating or inhibiting action of the phenolic compound.
Collapse
|
60
|
Hsieh HJ, Lin JA, Chen KT, Cheng KC, Hsieh CW. Thermal treatment enhances the α-glucosidase inhibitory activity of bitter melon (Momordica charantia) by increasing the free form of phenolic compounds and the contents of Maillard reaction products. J Food Sci 2021; 86:3109-3121. [PMID: 34146408 DOI: 10.1111/1750-3841.15798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Inhibition of α-glucosidase can slow carbohydrate metabolism, which is known as an effective strategy for diabetes treatment. The aim of this study is to evaluate the effect of thermal treatment (50, 60, and 70℃) for 15 days on the α-glucosidase inhibitory activity of bitter melon. The results show that the bitter melon heated at 70℃ for 12 days had the best α-glucosidase inhibitory effect. However, the amount of free polyphenols, 5-hydroxymethyl-2-furfural (5-HMF), and the browning degree of bitter melon generally increased with the time (15 days) and temperature of the thermal treatment, which is positively related to their antioxidant and α-glucosidase inhibitory activities. In conclusion, aged bitter melon shows great α-glucosidase inhibitory activity, which may be related to the increased free form of the involved phenolic compounds and Maillard reaction products. This suggests that thermal processing may be a good way to enhance the application of bitter melon for diabetes treatment. PRACTICAL APPLICATION: The thermal processing of bitter melon provides an application for diabetes treatment. This study demonstrated that heat-treated bitter melon can lower the blood glucose level; therefore, it can be used as a potential anti-hyperglycemic and functional food.
Collapse
Affiliation(s)
- Hsin-Jung Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Ting Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
61
|
López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R. Pulsed electric field treatment strategies to increase bioaccessibility of phenolic and carotenoid compounds in oil-added carrot purees. Food Chem 2021; 364:130377. [PMID: 34153602 DOI: 10.1016/j.foodchem.2021.130377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/15/2022]
Abstract
The impact of pulsed electric fields (PEF) and their combination with a thermal treatment on the bioaccessibility of phenolic and carotenoid compounds in oil-added carrot puree (5 %) was investigated. Fractions of such puree were differently treated: subjected to PEF (5 pulses of 3.5 kV cm-1) (PEF); thermally treated (70 °C for 10 min) (T) or first PEF treated and then thermally treated (PEF/T). Purees were in vitro digested, carotenoid and phenolic content and bioaccessibility were determined. Likewise, quality attributes and microstructure were analyzed. Generally, treatments did not affect carotenoid content and quality attributes, whereas phenolic content dramatically decreased after PEF. Nevertheless, all treatments enhanced both compounds bioaccessibilities, which were trebled in PEF-treated purees. Particle size reduction may suggest that microstructural changes could be responsible of bioaccessibility increases. Therefore, PEF could be a feasible treatment to enhance phenolic and carotenoid bioaccessibility without altering quality attributes of carrot-based puree.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Pedro Elez-Martínez
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
62
|
Jakobek L, Matić P, Ištuk J, Barron A. Study of Interactions Between Individual Phenolics of Aronia with Barley Beta-Glucan. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/136051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
63
|
Stabilization of cloudy apple juice by adding ecologically obtained extract of residual apples. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
64
|
Tang YM, Li AP, Xiao JP, Li DY, Wang L. Effects of bamboo shoots (Phyllostachys edulis) dietary fibers prepared by different processes on the adsorption characteristics of polyphenols. J Food Biochem 2021; 45:e13721. [PMID: 33837560 DOI: 10.1111/jfbc.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022]
Abstract
In this work, adopting bamboo shoots as raw materials, three kinds of bamboo shoots dietary fibers were prepared by physical, chemical, and enzymatic methods, termed BSPDF, BSCDF, and BSEDF, respectively, and then investigating their adsorption characteristics for polyphenols through soaked them in different concentrations and different types of polyphenol solutions. The results of the adsorption kinetics showed that the adsorption amounts of polyphenols significantly increased during the initial 30 s of soaking, and the subsequent adsorption rate became slower and slower achieving adsorption kinetics after 2 hr. Moreover, their adsorption isotherms met well with the Langmuir model, but differences in saturated adsorption capacity and adsorption rate. More impressively, the maximum adsorption capacities Qmax of them to polyphenols followed the order of catechin > phlorizin dihydrate > chlorogenic acid > gallic acid. In addition, BSPDF, BSCDF and BSEDF all could adsorb a large amount of free catechin with the saturated adsorption capacity of 15.77, 14.69 and 16.76 mg/g, respectively and which exhibited blue and green characteristic fluorescence emission signals in the presence of catechin. Therefore, compared with the other two methods, the enzymatic hydrolysis method retains the spatial network structure of the fibrils, has a larger surface area and porosity, retains the original bound phenol of fibrils, with stronger physiological activity and more potential applications. PRACTICAL APPLICATIONS: Polyphenols are easy to oxidize in vitro, and are easily affected by gastric acid and various enzymes in vivo, which reduce their physiological activity. However, dietary fibers can resist the destruction of various enzymes and acids in the gastrointestinal tract. It is increasingly being realized that dietary fibers play a very important role in adsorbing polyphenols into its network structure, which can achieve the purpose of protecting polyphenols. In this contest, the bamboo shoots dietary fibers prepared by different methods had different adsorption characteristics for polyphenols. The aim of current study was to compare the saturated adsorption capacity of three kinds of dietary fibers to polyphenols, and screen suitable processing technology. We believed that our findings could be to provide basis for the development of new functional foods.
Collapse
Affiliation(s)
- Yu Mei Tang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - An Ping Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jian Ping Xiao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Dong Yang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Le Wang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
65
|
Gao W, Zhu J, Liu P, Cui B, Abd El-Aty AM. Preparation and characterization of octenyl succinylated starch microgels via a water-in-oil (W/O) inverse microemulsion process for loading and releasing epigallocatechin gallate. Food Chem 2021; 355:129661. [PMID: 33848937 DOI: 10.1016/j.foodchem.2021.129661] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022]
Abstract
Corn starch (CS), octenyl succinic anhydride modified corn starch (OSCS) and shells (OSCs) microgels have been prepared using water-in-oil (W/O) inverse microemulsions for loading and releasing of epigallocatechin gallate (EGCG). The structural and morphological properties of CS, OSCS, and OSCs microgels were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Thermogravimetric analysis (TGA). The strong hydrogen bonds between starch molecules in the W/O system and interplay between hydroxyl groups of EGCG and oxygen atoms of starch microgels were formed. OSCs microgel showed low average particle size and weak thermal stability with an irregular shape and a typical V-type crystalline structure. Encapsulation efficiency (EE) and clearance rate of 2,2-diphenyl-1-picrylhydrazyl (DPPH) for EGCG were ranged between 41.78 and 63.89% and 75.53-85.37%, respectively, when absorbed into OSCS and OSCs microgels, the values which were higher than that of CS microgel. Further, OS starch microgels (particularly OSCs) modulated the slow release of EGCG into simulated gastrointestinal tract conditions and therefore could be proposed as an encapsulating agent for loading polyphenols.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jie Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
66
|
Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7-27. [PMID: 33397106 DOI: 10.1021/acs.jafc.0c05481] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the most widely consumed fruit in the world, apple (Malus domestica Borkh.) fruits provide a high level of phenolics and have many beneficial effects on human health. The composition and content of phenolic compounds in natural apples differs according to the tissue types and cultivar varieties. The bioavailability of apple-derived phenolics, depending on the absorption and metabolism of phenolics during digestion, is the key determinant of their positive biological effects. Meanwhile, various processing technologies affect the composition and content of phenolic compounds in apple products, further affecting the bioavailability of apple phenolics. This review summarizes current understanding on the compositions, distribution, absorption, and metabolism of phenolic compounds in apple and their stability when subjected to common technologies during processing. We intend to provide an updated overview on apple phenolics and also suggest some perspectives for future research of apple phenolics.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
67
|
Formulation and Stability of Cellulose-Based Delivery Systems of Raspberry Phenolics. Processes (Basel) 2021. [DOI: 10.3390/pr9010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Encapsulation of bioactives is a tool to prepare their suitable delivery systems and ensure their stability. For this purpose, cellulose was selected as carrier of raspberry juice phenolics and freeze-dried cellulose/raspberry encapsulates (C/R_Es) were formulated. Influence of cellulose amount (2.5%, 5%, 7.5% and 10%) and time (15 or 60 min) on the complexation of cellulose and raspberry juice was investigated. Obtained C/R_Es were evaluated for total phenolics, anthocyanins, antioxidant activity, inhibition of α-amylase and color. Additionally, encapsulation was confirmed by FTIR. Stability of C/R_Es was examined after 12 months of storage at room temperature. Increasing the amount of cellulose during formulation of C/R_E from 2.5% to 10%, resulted in the decrease of content of total phenolics and anthocyanins. Additionally, encapsulates formulated by 15 min of complexation had a higher amount of investigated compounds. This tendency was retained after storage. The highest antioxidant activities were determined for C/R_E with 2.5% of cellulose and the lowest for those with 10% of cellulose, regardless of the methods used for its evaluation. After storage of 12 months, antioxidant activity slightly increased. Encapsulates with 2.5% of cellulose had the highest and those with 10% of cellulose the lowest capability for inhibition of α-amylase. The amount of cellulose also had an impact on color of C/R_Es. Results of this study suggest that cellulose could be a good encapsulation polymer for delivering raspberry bioactives, especially when cellulose was used in lower percentages for formulation of encapsulates.
Collapse
|
68
|
Reynoud N, Petit J, Bres C, Lahaye M, Rothan C, Marion D, Bakan B. The Complex Architecture of Plant Cuticles and Its Relation to Multiple Biological Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:782773. [PMID: 34956280 PMCID: PMC8702516 DOI: 10.3389/fpls.2021.782773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 05/20/2023]
Abstract
Terrestrialization of vascular plants, i.e., Angiosperm, is associated with the development of cuticular barriers that prevent biotic and abiotic stresses and support plant growth and development. To fulfill these multiple functions, cuticles have developed a unique supramolecular and dynamic assembly of molecules and macromolecules. Plant cuticles are not only an assembly of lipid compounds, i.e., waxes and cutin polyester, as generally presented in the literature, but also of polysaccharides and phenolic compounds, each fulfilling a role dependent on the presence of the others. This mini-review is focused on recent developments and hypotheses on cuticle architecture-function relationships through the prism of non-lipid components, i.e., cuticle-embedded polysaccharides and polyester-bound phenolics.
Collapse
Affiliation(s)
- Nicolas Reynoud
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
| | - Johann Petit
- INRAE, University of Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Cécile Bres
- INRAE, University of Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Marc Lahaye
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
| | | | - Didier Marion
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
| | - Bénédicte Bakan
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
- *Correspondence: Bénédicte Bakan,
| |
Collapse
|
69
|
Eran Nagar E, Berenshtein L, Okun Z, Shpigelman A. The structure-dependent influence of high pressure processing on polyphenol-cell wall material (CWM) interactions and polyphenol-polyphenol association in model systems: Possible implication to accessibility. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Mamatha G, Sowmya P, Madhuri D, Mohan Babu N, Suresh Kumar D, Vijaya Charan G, Varaprasad K, Madhukar K. Antimicrobial Cellulose Nanocomposite Films with In Situ Generations of Bimetallic (Ag and Cu) Nanoparticles Using Vitex negundo Leaves Extract. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01819-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
71
|
Sęczyk Ł, Sugier D, Świeca M, Gawlik-Dziki U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem 2020; 344:128581. [PMID: 33199124 DOI: 10.1016/j.foodchem.2020.128581] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 01/23/2023]
Abstract
The effects of in vitro digestion, hydrothermal treatment, and food matrices (wheat flour, durum wheat flour, wholemeal wheat flour, corn flour, rice flour) on the bioaccessibility of phenolic compounds (gallic acid, p-coumaric acid, ferulic acid, chlorogenic acid, catechin) were investigated. The influence of experimental factors and their combinations was estimated based on the "Dose Correction Index" (DCI) concept. Generally, the applied conditions had a negative effect on the bioaccessibility of polyphenols; however, the effect depended on the type of compound and food matrix, which was reflected in different DCI values. A less unfavorable effect on the bioaccessibility was exerted by the rice flour (the lowest DCI values), but the most negative impact was found in the case of the wholemeal wheat flour. The DCI concept provides basic knowledge of the magnitude of factors affecting the bioaccessibility of polyphenols, which can be useful for designing fortified products with desirable bioactivity.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland.
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland.
| |
Collapse
|
72
|
Chen SQ, Cao X, Li Z, Zhu J, Li L. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin. Carbohydr Polym 2020; 246:116632. [DOI: 10.1016/j.carbpol.2020.116632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
|
73
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|
74
|
Polyphenols of Traditional Apple Varieties in Interaction with Barley β-Glucan: A Study of the Adsorption Process. Foods 2020; 9:foods9091278. [PMID: 32933005 PMCID: PMC7556014 DOI: 10.3390/foods9091278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Apple polyphenols have been studied for various beneficial bioactivities. Especially interesting are traditional, old varieties of apples for which some initial studies have suggested significant bioactivities, but they are still not completely understood. Polyphenol bioactivities can be affected by interactions with dietary fibers such as β-glucans. The aim of this study was to investigate for the first time interactions between individual polyphenols from traditional, old apple varieties (“Božićnica” and “Batulenka”) and β-glucans by studying the adsorption process. Polyphenols were extracted from the peel and flesh of traditional apples by using an ultrasonic bath and characterized with high-performance liquid chromatography. The amounts of adsorbed (qe) and un-adsorbed (ce) polyphenols were modeled with adsorption isotherms (Langmuir, Dubinin–Radushkevich, and Hill) by using improved non-linear fitting in a novel R algorithm, developed specifically for the modeling of adsorption isotherms. Polyphenols adsorbed onto β-glucan from 9 to 203 (peel, “Božićnica”), 1 to 484 (peel, “Batulenka”), 5 to 160 (flesh, “Božićnica”), and 19 to 28 mg g−1 (flesh, “Batulenka”). The adsorption was concentration dependent (polyphenols present in higher amount adsorbed in higher amounts). Physical sorption can be suggested. Polyphenols from traditional apples adsorb onto β-glucan and should be further studied.
Collapse
|
75
|
Moser SE, Shin JE, Kasturi P, Hamaker BR, Ferruzzi MG, Bordenave N. Formulation of Orange Juice with Dietary Fibers Enhances Bioaccessibility of Orange Flavonoids in Juice but Limits Their Ability to Inhibit In Vitro Glucose Transport. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9387-9397. [PMID: 32786825 DOI: 10.1021/acs.jafc.0c03334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of formulating orange juice (OJ) with dietary fibers (DFs) on in vitro bioaccessibility of flavonoids and their ability to inhibit glucose transport in Caco-2 cells were investigated on Valencia orange fruit (OF), OJ, and OJ formulated with 1 and 2.8% DFs. DFs were either orange pomace (P) or commercial pulverized citrus pulp fiber (CF). Juice extraction and formulation with CF led to minimal loss of flavonoids compared to formulation with P (474 μmol/100 g for OF vs 315-368 μmol/100 g for OJ and OJ with CF, and 266-280 μmol/100 g for OJ with P). Addition of DFs led to similar or improved flavonoid bioaccessibility compared to OJ (9.5% in OJ vs 7.9-33.4% with DFs) but higher glucose transport in Caco-2 cells (0.45 μmol/min in OJ alone vs 0.64-0.94 μmol/min with DFs). This paradoxical effect was attributed to potential complexation of flavonoids and DFs, preventing flavonoids from interfering with glucose transport.
Collapse
Affiliation(s)
- Sydney E Moser
- Department of Food Science, Purdue University, West Lafayette, Indiana 47905, United States
- PepsiCo R&D, Purchase, New York 10577, United States
| | - Jin-E Shin
- PepsiCo R&D, Barrington, Illinois 60010, United States
| | | | - Bruce R Hamaker
- Department of Food Science, Purdue University, West Lafayette, Indiana 47905, United States
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana 47905, United States
| | - Mario G Ferruzzi
- Department of Food Science, Purdue University, West Lafayette, Indiana 47905, United States
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana 47905, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Nicolas Bordenave
- PepsiCo R&D, Barrington, Illinois 60010, United States
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
76
|
Bertsch A, Roy D, LaPointe G. Fermentation of Wheat Bran and Whey Permeate by Mono-Cultures of Lacticaseibacillus rhamnosus Strains and Co-culture With Yeast Enhances Bioactive Properties. Front Bioeng Biotechnol 2020; 8:956. [PMID: 32850769 PMCID: PMC7427622 DOI: 10.3389/fbioe.2020.00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this work was to obtain a bioingredient (BI) with bioactive properties through the solid fermentation of a wheat bran-whey permeate (WB/WP) mixture with three strains of Lacticaseibacillus rhamnosus (R0011, ATCC 9595, and RW-9595M) in mono or co-culture with Saccharomyces cerevisiae. The choice of these strains was based on their capacity to produce the same exopolysaccharide (EPS), but at different yields. The solid fermentation of WB/WP revealed a similar growth pattern, sugar utilization and metabolite production between strains and types of culture. Lactic acid, soluble protein, free amino acid and phenolic compound content in BI were compared to NFWB. Water soluble polysaccharides (including EPS) were significantly increased in co-culture for (44%) ATCC 9595, (40%) R0011 and (27%) RW-9595M. The amount of bound Total Phenolic Content (TPC) as well as the antioxidant activity in BI were higher after fermentation. The free phenolic acid content was higher after fermentation with ATCC 9595 (53-59%), RW-9595M (45-46%), and R0011 (29-39%) compared to non-fermented NFWB. Fermentation by these strains increased the amounts of free caffeic acid and 4-hydroxybenzoic acid in both types of culture. The bound phenolic acid content was enhanced in co-culture for the BI obtained from the highest EPS producer strain RW-9595M which was 30% higher than NFWB. After in vitro digestion, bioaccessibility of free total phenolic acids was improved by more than 40% in BI compared to NFWB. The co-culture increased recovery of TPC (%) and antioxidant activity compared to monoculture for the strains in digested product. In contrast, the recovery of bound total phenolic acids in co-culture was 33 and 38% lower when compared to monoculture for R0011 and RW-9595M. Our findings provide new insights into the impact of LAB/yeast co-culture on the bioactive properties of fermented wheat bran.
Collapse
Affiliation(s)
- Annalisse Bertsch
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Denis Roy
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
77
|
Dai H, Wu J, Zhang H, Chen Y, Ma L, Huang H, Huang Y, Zhang Y. Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
78
|
Wu X, Li M, Xiao Z, Daglia M, Dragan S, Delmas D, Vong CT, Wang Y, Zhao Y, Shen J, Nabavi SM, Sureda A, Cao H, Simal-Gandara J, Wang M, Sun C, Wang S, Xiao J. Dietary polyphenols for managing cancers: What have we ignored? Trends Food Sci Technol 2020; 101:150-164. [DOI: 10.1016/j.tifs.2020.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
79
|
Berndtsson E, Andersson R, Johansson E, Olsson ME. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2406. [PMID: 32244813 PMCID: PMC7178181 DOI: 10.3390/ijerph17072406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
Human consumption of fruits and vegetables are generally below recommended levels. Waste from the production, e.g., of un-used parts such as broccoli leaves and stem when producing broccoli florets for food, is a sustainability issue. In this study, broccoli leaves were analyzed for the content of various dietary fibre and phenolics, applying the Uppsala method and HPLC analyses, respectively. The results showed that broccoli leaves had comparable levels of dietary fibre (26%-32% of dry weight (DW)) and phenolic compounds (6.3-15.2 mg/g DW) to many other food and vegetables considered valuable in the human diet from a health perspective. A significant positive correlation was found among soluble dietary fibre and phenolic acids indicating possible bindings between these components. Seasonal variations affected mainly the content of conjugated phenolics, and the content of insoluble dietary fibre. This study verified the importance of the use of broccoli production side streams (leaves) as they may contribute with health promoting components to the human diet and also socio-economic and environmental benefits to the bioeconomic development in the society.
Collapse
Affiliation(s)
- Emilia Berndtsson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE- 750 07 Uppsala, Sweden;
| | - Eva Johansson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Marie E. Olsson
- Department of Plant breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| |
Collapse
|
80
|
Fabrication and characterization of starch beads formed by a dispersion-inverse gelation process for loading polyphenols with improved antioxidation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105565] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
81
|
Adsorption between Quercetin Derivatives and β-Glucan Studied with a Novel Approach to Modeling Adsorption Isotherms. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interactions between polyphenols and fibers are important for polyphenol bioactivities, and have been studied in vitro with adsorption process and isotherms. However, the theoretical interpretations of adsorption potentially can be affected by the method of isotherm modeling. The aim was to study the interactions between β-glucan and quercetin derivatives (quercetin-3-glucoside, quercetin-3-galactoside, quercetin-3-rhamnoside) by studying adsorption, and to potentially improve the modeling of adsorption isotherms. Quercetin derivatives were determined by using spectrophotometric method. Experimental results were modeled with Langmuir, Dubinin-Radushkevich, and Hill isotherms using non-linear regression, linear regression, and improved non-linear regression. For improved non-linear regression, code in the R programming language was developed. All quercetin derivatives adsorbed onto the surface of β-glucan. Improved non-linear regression gave somewhat lower errors and may be the most appropriate for adsorption interpretation. According to isotherms obtained with improved regression, it may be suggested that adsorption is higher for rhamnoside and glucoside of quercetin than for quercetin-3-galactoside which agrees with experimental results. Adsorption could be a physical process. The spatial arrangement of hydroxyl (OH) groups on the glycoside part of quercetin could affect the adsorption. In conclusion, a novel approach using improved non-linear regression has been shown to be a useful, novel tool for adsorption interpretation.
Collapse
|
82
|
Perales-Vázquez GDC, Mercado-Mercado G, De la Rosa LA, Sáyago-Ayerdi SG. Bioaccesibilidad y cinética de liberación in vitro de compuestos fenólicos en algunas salsas de la cocina mexicana. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Las salsas en la cocina mexicana son consideradas un complemento fundamental de todos los platillos. En este trabajo se prepararon cuatro tipos de salsas mexicanas (SM): salsa roja cruda (SRCr), salsa roja cocinada (SRC), salsa verde cruda (SVCr) y salsa verde cocinada (SVC), se evaluó el porcentaje de bioaccesibilidad (%BA) y la velocidad de liberación de los compuestos fenólicos (CF) presentes en las SM. Se identificaron y cuantificaron por HPLC-MS los CF liberados de las SM en las diferentes etapas de un modelo de digestión in vitro. El %BA fue del 50% para la SRCr y hasta 62% para la SRC, valores semejantes presentaron la SVC y la SVCr. En la fracción intestinal se identificaron compuestos como catequina y galocatequín galato en los cuatro tipos de SM. La velocidad de liberación de los CF más alta fue de 3.70 mg EAG/min en la SRC y 2.16 mg EAG/min en la SVC. Los resultados sugieren una rápida liberación de los CF en ambas salsas rojas, sin embargo, esto no afecta la liberación final de los CF. Evaluar la BA de los CF de diferentes alimentos permite conocer cuántos y cuáles son los CF que potencialmente pueden estar biodisponibles en el organismo.
Collapse
|
83
|
Holland C, Ryden P, Edwards CH, Grundy MML. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020; 9:E201. [PMID: 32079083 PMCID: PMC7074226 DOI: 10.3390/foods9020201] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described.
Collapse
Affiliation(s)
- Claire Holland
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| | - Peter Ryden
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Myriam M.-L. Grundy
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| |
Collapse
|
84
|
Oketch-Rabah HA, Roe AL, Rider CV, Bonkovsky HL, Giancaspro GI, Navarro V, Paine MF, Betz JM, Marles RJ, Casper S, Gurley B, Jordan SA, He K, Kapoor MP, Rao TP, Sherker AH, Fontana RJ, Rossi S, Vuppalanchi R, Seeff LB, Stolz A, Ahmad J, Koh C, Serrano J, Low Dog T, Ko R. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep 2020; 7:386-402. [PMID: 32140423 PMCID: PMC7044683 DOI: 10.1016/j.toxrep.2020.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
As part of the United States Pharmacopeia's ongoing review of dietary supplement safety data, a new comprehensive systematic review on green tea extracts (GTE) has been completed. GTEs may contain hepatotoxic solvent residues, pesticide residues, pyrrolizidine alkaloids and elemental impurities, but no evidence of their involvement in GTE-induced liver injury was found during this review. GTE catechin profiles vary significantly with manufacturing processes. Animal and human data indicate that repeated oral administration of bolus doses of GTE during fasting significantly increases bioavailability of catechins, specifically EGCG, possibly involving saturation of first-pass elimination mechanisms. Toxicological studies show a hepatocellular pattern of liver injury. Published adverse event case reports associate hepatotoxicity with EGCG intake amounts from 140 mg to ∼1000 mg/day and substantial inter-individual variability in susceptibility, possibly due to genetic factors. Based on these findings, USP included a cautionary labeling requirement in its Powdered Decaffeinated Green Tea Extract monograph that reads as follows: "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)."
Collapse
Key Words
- ADME, Absorption, distribution, metabolism, and excretion
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, area under the curve
- Bw, body weight
- C, Catechin
- CAM, causality assessment method
- CG, (+)‐catechin‐3‐gallate
- CIH, Concanavalin A-induced hepatitis
- CMC, chemistry, manufacturing, and controls
- COMT, catechol‐O‐methyltransferase
- Camellia sinensis
- ConA, Concanavalin A
- DILI, drug‐induced liver injury
- DILIN, Drug‐Induced Liver Injury Network
- DO, Diversity Outbred
- DS, Dietary Supplement
- DSAE, JS3 USP Dietary Supplements Admission Evaluations Joint Standard-Setting Subcommittee
- Dietary supplements
- EC, (–)‐epicatechin
- ECG, (‐)‐epicatechin‐3‐gallate
- EFSA, European Food Safety Authority
- EGC, (–)‐epigallocatechin
- EGCG, (–)‐epigallocatechin‐3‐gallate
- FDA, United States Food and Drug Administration
- GC, (+)‐gallocatechin
- GCG, (–)‐gallocatechin‐3‐gallate
- GT(E), green tea or green tea extract
- GT, green tea
- GTE, green tea extract
- GTEH, EP Green Tea Extract Hepatotoxicity Expert Panel
- Green tea
- Green tea extract
- HDS, herbal dietary supplement
- HPMC, Hydroxypropyl methylcellulose
- Hepatotoxicity
- LD50, lethal dose, median
- LFT(s), liver function test(s)
- LT(s), Liver test(s)
- Liver injury
- MGTT, Minnesota Green Tea Trial
- MIDS, multi-ingredient dietary supplement
- MRL, maximum residue limit
- NAA, N-acetyl aspartate
- NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases
- NIH, National Institutes of Health
- NOAEL, no observed adverse effect level
- NTP, National Toxicology Program
- OSM, online supplementary material
- PAs, Pyrrolizidine Alkaloids
- PD-1, Programmed death domain-1
- PDGTE, powdered decaffeinated green tea extract
- PK/PD, pharmacokinetics and pharmacodynamics
- RUCAM, Roussel Uclaf Causality Assessment Method
- SIDS, single-ingredient dietary supplement
- TGF-beta, Transforming growth factor beta
- USP, United States Pharmacopeia
- γ-GT, Gamma-glutamyl transferase
Collapse
Affiliation(s)
- Hellen A. Oketch-Rabah
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Amy L. Roe
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Vice Chair, (USP GTEH EP, 2015-2020 cycle)
| | - Cynthia V. Rider
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Herbert L. Bonkovsky
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Gabriel I. Giancaspro
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Victor Navarro
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Mary F. Paine
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Joseph M. Betz
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Robin J. Marles
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Steven Casper
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
| | - Bill Gurley
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Scott A. Jordan
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Kan He
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Mahendra P. Kapoor
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Theertham P. Rao
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Averell H. Sherker
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Robert J. Fontana
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simona Rossi
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | | | - Leonard B. Seeff
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Andrew Stolz
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Jawad Ahmad
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Christopher Koh
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Drive, Building 10, Rm 9B-16, Bethesda, MD, 20892,USA
| | - Jose Serrano
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Tieraona Low Dog
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Richard Ko
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Chair (USP GTEH EP, 2015-2020 cycle)
| |
Collapse
|
85
|
Phan ADT, Williams BA, Netzel G, Mikkelsen D, D'Arcy BR, Gidley MJ. Independent fermentation and metabolism of dietary polyphenols associated with a plant cell wall model. Food Funct 2020; 11:2218-2230. [DOI: 10.1039/c9fo02987g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The metabolic pathways of polyphenol degradation are not influenced by the presence of plant cell walls during in vitro fermentation, but co-fermentation of cell walls may lead to faster microbial metabolism of polyphenols.
Collapse
Affiliation(s)
- A. D. T. Phan
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. A. Williams
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - G. Netzel
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - D. Mikkelsen
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. R. D'Arcy
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - M. J. Gidley
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
86
|
|
87
|
Mikkelsen D, Lopez-Sanchez P, Wang D, Gidley MJ. Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation. Methods Mol Biol 2020; 2149:73-87. [PMID: 32617930 DOI: 10.1007/978-1-0716-0621-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Komagataeibacter xylinus synthesizes cellulose in an analogous fashion to plants. Through fermentation of K. xylinus in media containing cell wall polysaccharides from the hemicellulose and/or pectin families, composites with cellulose can be produced. These serve as general models for the assembly, structure, and properties of plant cell walls. By studying structure/property relationships of cellulose composites, the effects of defined hemicellulose and/or pectin polysaccharide structures can be investigated. The macroscopic nature of the composites also allows composite mechanical properties to be characterized.The method for producing cellulose-based composites involves reviving and then culturing K. xylinus in the presence of desired hemicelluloses and/or pectins. Different conditions are required for construction of hemicellulose- and pectin-containing composites. Fermentation results in a floating mat or pellicle of cellulose-based composite that can be recovered, washed, and then studied under hydrated conditions without any need for intermediate drying.
Collapse
Affiliation(s)
- Deirdre Mikkelsen
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Patricia Lopez-Sanchez
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.,Product Design, Agrifood, Bioeconomy and Health, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Dongjie Wang
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.,College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, TEDA, Tianjin, China
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
88
|
Tudorache M, Bordenave N. Phenolic compounds mediate aggregation of water-soluble polysaccharides and change their rheological properties: Effect of different phenolic compounds. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
89
|
Xu J, Li X, Liu S, Zhao P, Huo H, Zhang Y. Effect of Nanocrystallization of Anthocyanins Extracted from Two Types of Red-Fleshed Apple Varieties on Its Stability and Antioxidant Activity. Molecules 2019; 24:molecules24183366. [PMID: 31527454 PMCID: PMC6767359 DOI: 10.3390/molecules24183366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022] Open
Abstract
Red-fleshed apple (Malus sieversii f. neidzwetzkyana (Dieck) Langenf) has attracted more and more attention due to its enriched anthocyanins and high antioxidant activity. In this study we extracted total anthocyanins and phenols from two types of red-fleshed apples-Xinjing No.4 (XJ4) and Red Laiyang (RL)-to study the stability and antioxidant activity of anthocyanins after encapsulation onto Corn Starch Nanoparticles (CSNPs). The results indicated the anthocyanins and total phenol levels of XJ4 were 2.96 and 2.25 times higher than those of RL respectively. The anthocyanin concentration and loading time had a significant effect on CSNPs encapsulation, and XJ4 anthocyanins always showed significantly higher loading capacity than RL. After encapsulation, the morphology of RL-CSNPs and XJ4-CSNPs was still spherical with a smooth surface as CSNPs, but the particle size increased compared to CSNPs especially for RL-CSNPs. Different stress treatments including UV light, pH, temperature, and salinity suggested that XJ4-CSNPs exhibited consistently higher stability than RL-CSNPs. A significantly enhanced free radical scavenging rate under stress conditions was observed, and XJ4-CSNPs had stronger antioxidant activity than RL-CSNPs. Furthermore, XJ4-CSNPs exhibited a slower released rate than RL-CSNPs in simulated gastric (pH 2.0) and intestinal (pH 7.0) environments. Our research suggests that nanocrystallization of anthocyanins is an effective method to keep the anthocyanin ingredients intact and active while maintaining a slow release rate. Compared to RL, encapsulation of XJ4 anthocyanins has more advantages, which might be caused by the significant differences in the metabolites of XJ4. These findings give an insight into understanding the role of nanocrystallization using CSNPs in enhancing the antioxidant ability of anthocyanins from different types of red-fleshed apples, and provide theoretical foundations for red-fleshed apple anthocyanin application.
Collapse
Affiliation(s)
- Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xinxin Li
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shifeng Liu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Peilei Zhao
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA.
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
90
|
Deng Z, Pei Y, Wang S, Zhou B, Li J, Hou X, Li J, Li B, Liang H. Carboxymethylpachymaran entrapped plant-based hollow microcapsules for delivery and stabilization of β-galactosidase. Food Funct 2019; 10:4782-4791. [PMID: 31313784 DOI: 10.1039/c9fo00649d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Galactosidase (β-Gal) as a dietary supplement can alleviate symptoms of lactose intolerance. However, β-Gal is deactivated due to the highly acidic conditions and proteases in the digestive tract. In this work, β-Gal was encapsulated into L. clavatum sporopollenin exine capsules (SECs) to fabricate an oral-controlled release system and increase the stability of β-Gal in the digestive tract. The SEC extraction process was optimized. A 3-hour vacuum loading was determined as the optimal loading time. Five different initial ratios of SECs : β-Gal were optimized with the maximum enzyme retention rate reaching 79.40 ± 1.96%. Furthermore, β-Gal-loaded SECs entrapped in carboxymethylpachymaran (CMP) could control the release of β-Gal under simulated gastrointestinal conditions (SGC). The optimal enzyme retention rate reached 65.33 ± 1.46% within 24 h under SGC. Collectively, these results indicated that the entrapped SECs could be used as an effective oral delivery vehicle of β-Gal to improve its performance as a dietary supplement in the digestion of lactose.
Collapse
Affiliation(s)
- Ziyu Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Liu D, Lopez-Sanchez P, Martinez-Sanz M, Gilbert EP, Gidley MJ. Adsorption isotherm studies on the interaction between polyphenols and apple cell walls: Effects of variety, heating and drying. Food Chem 2019; 282:58-66. [DOI: 10.1016/j.foodchem.2018.12.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 01/29/2023]
|
92
|
Effects of tea polyphenols and gluten addition on in vitro wheat starch digestion properties. Int J Biol Macromol 2019; 126:525-530. [DOI: 10.1016/j.ijbiomac.2018.12.224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/15/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
|
93
|
Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:135-181. [PMID: 31445595 DOI: 10.1016/bs.afnr.2019.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commercial trends based of the emergence of plant-based functional foods lead to investigate the structure-function relationship of their main bioactive constituents and their interactions in the food matrix and throughout the gastro-intestinal tract. Among these bioactive constituents, dietary polysaccharides and polyphenols have shown to interact at the molecular level and these interactions may have consequences on the polysaccharides physical and nutritional properties. The methods of investigation and mechanisms of interactions between polysaccharides and polyphenols are reviewed in light of their respective technological and nutritional functionalities. Finally, the potential impact of the co-occurrence or co-ingestion of polyphenols and polysaccharides on the technological and nutritional functionality of the polysaccharides are investigated.
Collapse
|
94
|
Giusti F, Capuano E, Sagratini G, Pellegrini N. A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion. Food Chem 2019; 285:458-467. [PMID: 30797370 DOI: 10.1016/j.foodchem.2019.01.148] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/11/2022]
Abstract
Legumes represent staple foods rich in phenolic compounds, which are often consumed after soaking and boiling. This study determines the fate of phenolic compounds from six legumes varieties belonging to the species Lens culinaris Medik., Phaseolus vulgaris L. and Cicer arietinum L. after soaking, boiling and digestion. To this purpose, a new HPLC-DAD method was developed and validated. Results show that the cooking process strongly reduces the content in free and bound phenolic compounds and that the processing water is a valuable source of phenolics. Bioaccessibility of phenolics from the legume matrix was investigated separately in the coat and the cotyledons of three chosen varieties (black beans, black lentils and pinto beans) by means of a standardized in vitro digestion protocol. Results showed that only a fraction of the phenolic compounds is bioaccessible, which may have implications for human health.
Collapse
Affiliation(s)
- Federica Giusti
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy.
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Bornse Weilanden 9, 6700 AA Wageningen, the Netherlands.
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy.
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University, Bornse Weilanden 9, 6700 AA Wageningen, the Netherlands; Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parco Area delle Scienze, 47/A, 43125 Parma, Italy.
| |
Collapse
|
95
|
Jakobek L, Matić P. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
96
|
Chou S, Meng X, Cui H, Zhang S, Wang H, Li B. Rheological and pasting properties of maize, wheat and rice starch as affected by apple polyphenols. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1671452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hanchen Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
97
|
Liu Y, Ying D, Sanguansri L, Augustin MA. Comparison of the adsorption behaviour of catechin onto cellulose and pectin. Food Chem 2019; 271:733-738. [DOI: 10.1016/j.foodchem.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/05/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
98
|
Jacek P, Szustak M, Kubiak K, Gendaszewska-Darmach E, Ludwicka K, Bielecki S. Scaffolds for Chondrogenic Cells Cultivation Prepared from Bacterial Cellulose with Relaxed Fibers Structure Induced Genetically. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1066. [PMID: 30563030 PMCID: PMC6315621 DOI: 10.3390/nano8121066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
Abstract
Development of three-dimensional scaffolds mimicking in vivo cells' environment is an ongoing challenge for tissue engineering. Bacterial nano-cellulose (BNC) is a well-known biocompatible material with enormous water-holding capacity. However, a tight spatial organization of cellulose fibers limits cell ingrowth and restricts practical use of BNC-based scaffolds. The aim of this study was to address this issue avoiding any chemical treatment of natural nanomaterial. Genetic modifications of Komagataeibacter hansenii ATCC 23769 strain along with structural and mechanical properties characterization of obtained BNC membranes were conducted. Furthermore, the membranes were evaluated as scaffolds in in vitro assays to verify cells viability and glycosaminoglycan synthesis by chondrogenic ATDC5 cells line as well as RBL-2H3 mast cells degranulation. K. hansenii mutants with increased cell lengths and motility were shown to produce BNC membranes with increased pore sizes. Novel, BNC membranes with relaxed fiber structure revealed superior properties as scaffolds when compared to membranes produced by a wild-type strain. Obtained results confirm that a genetic modification of productive bacterial strain is a plausible way of adjustment of bacterial cellulose properties for tissue engineering applications without the employment of any chemical modifications.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Marcin Szustak
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Katarzyna Kubiak
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Karolina Ludwicka
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| |
Collapse
|
99
|
Chirug L, Okun Z, Ramon O, Shpigelman A. Iron ions as mediators in pectin-flavonols interactions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Liu Y, Ying D, Sanguansri L, Cai Y, Le X. Adsorption of catechin onto cellulose and its mechanism study: Kinetic models, characterization and molecular simulation. Food Res Int 2018; 112:225-232. [DOI: 10.1016/j.foodres.2018.06.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/17/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
|