51
|
Amorim M, Pereira J, Silva L, Ormenese R, Pacheco M, Pintado M. Use of whey peptide fraction in coated cashew nut as functional ingredient and salt replacer. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
U G Y, Bhat I, Karunasagar I, B S M. Antihypertensive activity of fish protein hydrolysates and its peptides. Crit Rev Food Sci Nutr 2018. [PMID: 29533693 DOI: 10.1080/10408398.2018.1452182] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rising interest to utilize nutritionally exorbitant fish proteins has instigated research activities in fish waste utilization. The development of newer technologies to utilize fish waste has fostered use of bioactive value-added products for specific health benefits. Enzymatically obtained Fish Protein Hydrolysate (FPH) is a rich source of biologically active peptides possessing anti-oxidant, anticancer, antimicrobial and anti-hypertensive activity. Isolating natural remedies to combat alarming negative consequences of synthetic drugs has been the new trend in current research promoting identification of antihypertensive peptides from FPH. In this review, we aim to culminate data available to produce antihypertensive peptides from FPH, its composition and potential to be used as a therapeutic agent. These purified peptides are known to be rich in arginine, valine and leucine. Reports reveal peptides with low molecular weight (<1 kDa) and shorter chain length (<20 amino acids) exhibited higher antihypertensive activity. As these peptides have proven Angiotensin Converting Enzyme - I inhibitory activity in vitro and in vivo, their potential to be used as antihypertensive drugs is outrageous. However, current focus on research in the field of molecular docking is necessary to have improved understanding of interaction of the peptides with the enzyme.
Collapse
Affiliation(s)
- Yathisha U G
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Ishani Bhat
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Iddya Karunasagar
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Mamatha B S
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| |
Collapse
|
53
|
Kumar DP, Chandra MV, Elavarasan K, Shamasundar BA. Structural properties of gelatin extracted from croaker fish (Johnius sp) skin waste. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1381702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D Pavan Kumar
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, College of Fisheries, Mangalore, India
| | - M V. Chandra
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, College of Fisheries, Mangalore, India
| | - K. Elavarasan
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, College of Fisheries, Mangalore, India
| | - B. A. Shamasundar
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, College of Fisheries, Mangalore, India
| |
Collapse
|
54
|
Dash P, Ghosh G. Amino acid composition, antioxidant and functional properties of protein hydrolysates from Cucurbitaceae seeds. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:4162-4172. [PMID: 29184221 PMCID: PMC5685994 DOI: 10.1007/s13197-017-2855-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 01/14/2023]
Abstract
In this study, the effect of enzymatic hydrolysis of globulin fraction of C. moschata (CMH), C. lanatus (CLH) and L. siceraria (LSH) on antioxidant capacity, functional properties, structural and micro-structural properties, as well as amino acid compositions were evaluated. All the hydrolysates exhibited significant antioxidant properties. The essential amino acids content in LSH (92.7 mg/g) was higher than CMH (79.9 mg/g) and CLH (70.5 mg/g). Water absorption capacity (5 g/g), heat stability (89%), emulsifying activity index (98.3 m2/g) and emulsifying stability index (45.1 min) were statistically more significant for LSH as compared to CMH and CLH. In addition, LSH had significantly higher FS and FC at pH 3-9. Among all hydrolysates, LSH showed highest solubility (87.3%) as compared to other hydrolysates. The results suggested that enzymatic hydrolysis improve the antioxidant and functional properties. Thus, the globulin hydrolysates might be served as an innovative source with promising nutritive values, good antioxidant and functional properties. Moreover, these could be used in food and pharmaceutical industries for the development of novel functional foods.
Collapse
Affiliation(s)
- Priyanka Dash
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar, Odisha 751003 India
| | - Goutam Ghosh
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar, Odisha 751003 India
| |
Collapse
|
55
|
Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 2017; 58:3097-3129. [PMID: 29020461 DOI: 10.1080/10408398.2017.1352564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed.
Collapse
Affiliation(s)
- Mona Hajfathalian
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Sakhi Ghelichi
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark.,b Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - Pedro J García-Moreno
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ann-Dorit Moltke Sørensen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Charlotte Jacobsen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
56
|
Mazorra-Manzano MA, Ramírez-Suarez JC, Yada RY. Plant proteases for bioactive peptides release: A review. Crit Rev Food Sci Nutr 2017; 58:2147-2163. [DOI: 10.1080/10408398.2017.1308312] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. A. Mazorra-Manzano
- Laboratorio de Biotecnología de Lácteos, Química y Autenticidad de Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
| | - J. C. Ramírez-Suarez
- Laboratorio de Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
| | - R. Y. Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|
57
|
Wang X, Yu H, Xing R, Li P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9746720. [PMID: 28761878 PMCID: PMC5518491 DOI: 10.1155/2017/9746720] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides.
Collapse
Affiliation(s)
- Xueqin Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
58
|
Identification of glycated sites in ovalbumin under freeze-drying processing by liquid chromatography high-resolution mass spectrometry. Food Chem 2017; 226:1-7. [DOI: 10.1016/j.foodchem.2017.01.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/20/2016] [Accepted: 01/09/2017] [Indexed: 11/18/2022]
|
59
|
Zhang B, Sun Q, Liu HJ, Li SZ, Jiang ZQ. Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
60
|
Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chem 2017; 221:1860-1866. [DOI: 10.1016/j.foodchem.2016.10.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 01/13/2023]
|
61
|
Wang X, Yu H, Xing R, Chen X, Liu S, Li P. Optimization of the Extraction and Stability of Antioxidative Peptides from Mackerel ( Pneumatophorus japonicus) Protein. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6837285. [PMID: 28194421 PMCID: PMC5282459 DOI: 10.1155/2017/6837285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/18/2016] [Indexed: 11/18/2022]
Abstract
This study optimizes the preparation conditions for mackerel protein hydrolysate (MPH) by response surface methodology (RSM) and investigates the stability of the antioxidant activity of MPHs (<2.5 kDa). The optimal conditions were as follows: enzyme concentration of 1726.85 U/g, pH of 7.00, temperature of 39.55°C, time of 5.5 h, and water/material ratio of 25 : 1, and the maximum DPPH scavenging activity was 79.14%. The MPHs indicated significant cellular antioxidant activity at low concentrations. Furthermore, the temperature and freeze-thaw cycles had little effect on the antioxidative stability while pH had significant effect on the antioxidative stability. In addition, the MPHs were sensitive to the metal ions, such as Fe2+, Fe3+, Zn2+, and Cu2+. Notably, when the concentrations of Fe2+ and Fe3+ were 5 mM, the DPPH scavenging activities were only 1.1% and 0.6%, respectively; furthermore, Cu2+ at a 5 mM concentration could completely inhibit the DPPH scavenging activity of MPHs. In contrast, K+ and Mg2+ had no notable effect on the antioxidant activity of MPHs. These results may provide a scientific basis for the processing and application of MPHs.
Collapse
Affiliation(s)
- Xueqin Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaolin Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|