51
|
Fathi F, Mohammadzadeh-Aghdash H, Sohrabi Y, Dehghan P, Ezzati Nazhad Dolatabadi J. Kinetic and thermodynamic studies of bovine serum albumin interaction with ascorbyl palmitate and ascorbyl stearate food additives using surface plasmon resonance. Food Chem 2018; 246:228-232. [DOI: 10.1016/j.foodchem.2017.11.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022]
|
52
|
Mohammadzadeh-Aghdash H, Sohrabi Y, Mohammadi A, Shanehbandi D, Dehghan P, Ezzati Nazhad Dolatabadi J. Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives. Food Chem 2018; 257:211-215. [PMID: 29622200 DOI: 10.1016/j.foodchem.2018.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Cytotoxicity and genotoxicity of sodium acetate (SA), sodium diacetate (SDA), and potassium sorbate (PS) was tested on Human Umbilical Vein Endothelial Cells (HUVEC). Cytotoxicity was investigated by MTT assay and flow cytometry analysis, while genotoxicity was evaluated using DNA fragmentation and DAPI staining assays. The growth of treated HUVECs with various concentrations of SA, SDA and PS decreased in a dose-and time-dependent manner. The IC50 of 487.71, 485.82 and 659.96 µM after 24 h and IC50 of 232.05, 190.19 and 123.95 µM after 48 h of treatment were attained for SA, SDA and PS, respectively. Flow cytometry analysis showed that early and late apoptosis percentage in treated cells was not considerable. Also neither considerable DNA fragmentation nor DNA smear was observed using DAPI staining and DNA ladder assays. Overall, it can be concluded that the aforementioned food additives can be used as safe additives at low concentration in food industry.
Collapse
Affiliation(s)
- Hossein Mohammadzadeh-Aghdash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
53
|
Kaur A, Khan IA, Banipal PK, Banipal TS. Deciphering the complexation process of a fluoroquinolone antibiotic, levofloxacin, with bovine serum albumin in the presence of additives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:259-270. [PMID: 29045929 DOI: 10.1016/j.saa.2017.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
The current work aims to explore the thermodynamic and conformational aspects for the binding of fluoroquinolone antibacterial drug, levofloxacin (LFC), with bovine serum albumin (BSA) using calorimetric, spectroscopic (UV-visible, fluorescence, circular dichroism, and 1H NMR), dynamic light scattering (DLS) and computational methods (molecular docking). The binding of LFC with BSA at two sequential sites with higher affinity (~103M-1) at the first site has been explored by calorimetry whereas the binding at a single site with affinity of the order of ~104M-1 has been observed from fluorescence spectroscopy. The calorimetric study in the presence of additives along with docking analysis reveals the significant role of electrostatic, hydrogen bonding, and hydrophobic interactions in the association process. The slight conformational changes in protein as well as the changes in the water network structure around the binding cavity of protein have been observed from spectroscopic and DLS measurements. The LFC induced quenching of BSA fluorescence was observed to be initiated mainly through the static quenching process and this suggests the formation of ground state LFC-BSA association complex. The stronger interactions of LFC in the cavity of Sudlow site I (subdomain IIA) of protein have been explored from site marker calorimetric and molecular docking study.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Imran Ahmd Khan
- School of Pharmaceutical Science and Technology,Tianjin University, Tianjin 300072, PR China
| | | | - Tarlok Singh Banipal
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
54
|
Liu D, Zheng H. Xylenol orange probe-based spectroscopic insight into the interaction between strontium (II) and bovine serum albumin. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5508-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
55
|
Pawar SK, Naik RS, Seetharamappa J. Exploring the binding of two potent anticancer drugs bosutinib and imatinib mesylate with bovine serum albumin: spectroscopic and molecular dynamic simulation studies. Anal Bioanal Chem 2017; 409:6325-6335. [DOI: 10.1007/s00216-017-0565-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|
56
|
Sharifi M, Ezzati Nazhad Dolatabadi J, Fathi F, Zakariazadeh M, Barzegar A, Rashidi M, Tajalli H, Rashidi MR. Surface plasmon resonance and molecular docking studies of bovine serum albumin interaction with neomycin: kinetic and thermodynamic analysis. ACTA ACUST UNITED AC 2017; 7:91-97. [PMID: 28752073 PMCID: PMC5524990 DOI: 10.15171/bi.2017.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022]
Abstract
Introduction: The interactions between biomacromolecules such as serum albumin (SA) and various drugs have attracted increasing research attention in recent years. However, the study of SA with those drugs that have relatively high hydrophilicity and a lower affinity for SA could be a challenging issue. At the present study, the interaction of bovine SA (BSA) with neomycin as a hydrophilic drug has been investigated using surface plasmon resonance (SPR) and molecular docking methods. Methods: BSA was immobilized on the carboxymethyl dextran hydrogel sensor chip after activation of carboxylic groups through NHS/EDC and, then, the neomycin interaction with BSA at different concentrations (1-128 µM) was investigated. Results: Dose-response sensorgrams of BSA upon increasing concentration of neomycin has been shown through SPR analysis. The small KD value (4.96 e-7 at 40°C) demonstrated high affinity of neomycin to BSA. Thermodynamic parameters were calculated through van't Hoff equation at 4 different temperatures. The results showed that neomycin interacts with BSA via Van der Waals interactions and hydrogen bonds and increase of KD with temperature rising indicated that the binding process was entropy driven. Molecular docking study confirmed that hydrogen bond was the major intermolecular force stabilizing neomycin-BSA complex. Conclusion: The attained results showed that neomycin molecules can efficiently distribute within the body after interaction with BSA in spite of having hydrophilic properties. Besides, SPR can be considered as a useful instrument for study of the interaction of hydrophilic drugs with SA.
Collapse
Affiliation(s)
- Maryam Sharifi
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Jafar Ezzati Nazhad Dolatabadi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Zakariazadeh
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Mohammad Rashidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Tajalli
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|