51
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
52
|
Aptamer based voltammetric patulin assay based on the use of ZnO nanorods. Mikrochim Acta 2018; 185:462. [DOI: 10.1007/s00604-018-3006-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/09/2018] [Indexed: 01/09/2023]
|
53
|
Yuphintharakun N, Nurerk P, Chullasat K, Kanatharana P, Davis F, Sooksawat D, Bunkoed O. A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:382-391. [PMID: 29775931 DOI: 10.1016/j.saa.2018.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
A nanocomposite optosensor consisting of carboxylic acid functionalized multiwall carbon nanotubes and CdTe quantum dots embedded inside a molecularly imprinted polymer (COOH@MWCNT-MIP-QDs) was developed for trace ciprofloxacin detection. The COOH@MWCNT-MIP-QDs were synthesized through a facile sol-gel process using ciprofloxacin as a template molecule, 3-aminopropylethoxysilane as a functional monomer and tetraethoxysilane as a cross-linker at a molar ratio of 1:8:20. The synthesized nanocomposite optosensor had high sensitivity, excellent specificity and high binding affinity to ciprofloxacin. Under optimal conditions, the fluorescence intensity of the optosensor decreased in a linear fashion with the concentration of ciprofloxacin and two linear dynamic ranges were obtained, 0.10-1.0 μg L-1 and 1.0-100.0 μg L-1 with a very low limit of detection of 0.066 μg L-1. The imprinting factors of the two linear range were 17.67 and 4.28, respectively. The developed nanocomposite fluorescence probe was applied towards the determination of ciprofloxacin levels in chicken muscle and milk samples with satisfactory recoveries being obtained in the range of 82.6 to 98.4%. The results were also in good agreement with a HPLC method which indicates that the optosensor can be used as a sensitive, selective and rapid method to detect ciprofloxacin in chicken and milk samples.
Collapse
Affiliation(s)
- Naphat Yuphintharakun
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Piyaluk Nurerk
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kochaporn Chullasat
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Frank Davis
- University of Chichester, College Lane, Chichester, West Sussex P019 6PE, UK
| | - Dhassida Sooksawat
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Opas Bunkoed
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
54
|
Fabrication of a novel magnetic mesoporous molecularly imprinted polymer based on pericarpium granati-derived carrier for selective absorption of bromelain. Food Chem 2018; 256:91-97. [DOI: 10.1016/j.foodchem.2018.02.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/26/2018] [Accepted: 02/21/2018] [Indexed: 01/19/2023]
|
55
|
Habimana JDD, Ji J, Sun X. Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1458104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jean de Dieu Habimana
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food Science and Technology, School of Food Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
56
|
Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in Honeysuckle tea. Talanta 2018; 181:271-277. [DOI: 10.1016/j.talanta.2018.01.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
|
57
|
Zhou X, Yang Q, Wang H, Huang F, Zhang J, Xu S. Effects of Ni2+ concentration and vacuum annealing on structure, morphology and optical properties of Ni doped ZnS nanopowders synthesized by hydrothermal method. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
58
|
Zhang C, Liu S, Liu X, Deng F, Xiong Y, Tsai FC. Incorporation of Mn 2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells. ROYAL SOCIETY OPEN SCIENCE 2018. [PMID: 29657776 DOI: 10.5061/dryad.27g26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Collapse
Affiliation(s)
- Chenguang Zhang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Shaowen Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Xingwei Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Fei Deng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Yan Xiong
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| | - Fang-Chang Tsai
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
59
|
Zhang C, Liu S, Liu X, Deng F, Xiong Y, Tsai FC. Incorporation of Mn 2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171712. [PMID: 29657776 PMCID: PMC5882700 DOI: 10.1098/rsos.171712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/09/2018] [Indexed: 05/30/2023]
Abstract
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Collapse
Affiliation(s)
- Chenguang Zhang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Shaowen Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Xingwei Liu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Fei Deng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | - Yan Xiong
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| | - Fang-Chang Tsai
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
60
|
Bagheri N, Khataee A, Habibi B, Hassanzadeh J. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 2018; 179:710-718. [DOI: 10.1016/j.talanta.2017.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
61
|
Berthiller F, Cramer B, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2016-2017. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2250] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2016 and mid-2017. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed LC-MS based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - R. Krska
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - S. MacDonald
- Department of Contaminants and Authenticity, Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|
62
|
Yu F, Xiong YM, Yu SC, He LL, Niu SS, Wu YM, Liu J, Qu LB, Liu LE, Wu YJ. Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample. Int J Nanomedicine 2018; 13:429-437. [PMID: 29403274 PMCID: PMC5777376 DOI: 10.2147/ijn.s152618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background DNA methyltransferase 1 (DNMT1), a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase) detection have focused on the prokaryote MTase and its activity. Methods A magnetic fluorescence-linked immunosorbent assay (FLISA) using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized. Results Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1-1,500 ng/mL, the recovery was 91.67%-106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%-11.29% and 7.03%-11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA) kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001). The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter than ELISA kits. Conclusion These indicated that the proposed FLISA method was sensitive and high throughput and can quickly screen the level of DNMT1 in serum samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | | | | |
Collapse
|
63
|
Soares RRG, Ricelli A, Fanelli C, Caputo D, de Cesare G, Chu V, Aires-Barros MR, Conde JP. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018; 143:1015-1035. [DOI: 10.1039/c7an01762f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in analytical methods for mycotoxin screening in foods and feeds are reviewed, focusing on point-of-need detection using integrated devices.
Collapse
Affiliation(s)
- Ruben R. G. Soares
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
| | | | - Corrado Fanelli
- Department of Environmental Biology
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Domenico Caputo
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Giampiero de Cesare
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
| | - M. Raquel Aires-Barros
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| | - João P. Conde
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- Department of Bioengineering
- Instituto Superior Técnico
- Universidade de Lisboa
| |
Collapse
|
64
|
Li M, Xue XY, Wang Y, An FQ, Hu TP, Gao JF. Preparation of Surface Imprinted Polymer D301-g
-IIPDMC and its Recognition Selectivity Performance towards AuCl4
−. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Li
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Xiao-yan Xue
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Yong Wang
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Fu-qiang An
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Tuo-ping Hu
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Jian-feng Gao
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| |
Collapse
|
65
|
Peltomaa R, Benito-Peña E, Moreno-Bondi MC. Bioinspired recognition elements for mycotoxin sensors. Anal Bioanal Chem 2017; 410:747-771. [PMID: 29127461 DOI: 10.1007/s00216-017-0701-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
Abstract
Mycotoxins are low molecular weight molecules produced as secondary metabolites by filamentous fungi that can be found as natural contaminants in many foods and feeds. These toxins have been shown to have adverse effects on both human and animal health, and are the cause of significant economic losses worldwide. Sensors for mycotoxin analysis have traditionally applied elements of biological origin for the selective recognition purposes. However, since the 1970s there has been an exponential growth in the use of genetically engineered or synthetic biomimetic recognition elements that allow some of the limitations associated with the use of natural receptors for the analyses of these toxins to be circumvented. This review provides an overview of recent advances in the application of bioinspired recognition elements, including recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, to the development of sensors for mycotoxins based on different transduction elements. Graphical abstract Novel analytical methods based on bioinspired recognition elements, such as recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, can improve the detection of mycotoxins and provide better tools than their natural counterparts to ensure food safety.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|