51
|
Asgari K, Labbafi M, Khodaiyan F, Kazemi M, Hosseini SS. Valorization of walnut processing waste as a novel resource: Production and characterization of pectin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kianoosh Asgari
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| | - Mohsen Labbafi
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| | - Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| |
Collapse
|
52
|
Mota J, Muro C, Illescas J, Hernández OA, Tecante A, Rivera E. Extraction and Characterization of Pectin from the Fruit Peel of
Opuntia robusta. ChemistrySelect 2020. [DOI: 10.1002/slct.202002181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaquelinne Mota
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Avenida Tecnológico S/N Ex-Rancho la Virgen, C.P. 52140 Toluca México
| | - Claudia Muro
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Avenida Tecnológico S/N Ex-Rancho la Virgen, C.P. 52140 Toluca México
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Avenida Tecnológico S/N Ex-Rancho la Virgen, C.P. 52140 Toluca México
| | - Omar A. Hernández
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Avenida Tecnológico S/N Ex-Rancho la Virgen, C.P. 52140 Toluca México
| | | | - Ernesto Rivera
- Universidad Nacional Autónoma de México Instituto de Investigaciones en Materiales Avenida Universidad #3000 Colonia UNAM. C.P. 04510 Delegación Coyoacán. CDMX México
| |
Collapse
|
54
|
Amamou S, Lazreg H, Hafsa J, Majdoub H, Rihouey C, Le Cerf D, Achour L. Effect of extraction condition on the antioxidant, antiglycation and α-amylase inhibitory activities of Opuntia macrorhiza fruit peels polysaccharides. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
56
|
Domínguez-Perles R, Sánchez-Martínez I, Rodríguez-Hernández MD, López-González I, Oger C, Guy A, Durand T, Galano JM, Ferreres F, Gil-Izquierdo A. Optimization of Free Phytoprostane and Phytofuran Production by Enzymatic Hydrolysis of Pea Extracts Using Esterases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3445-3455. [PMID: 32078311 DOI: 10.1021/acs.jafc.9b06624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the growing interest in phytoprostanes (PhytoPs) and phytofurans (PhytoFs) in the fields of plant physiology, biotechnology, and biological function, the present study aims to optimize a method of enzymatic hydrolysis that utilizes bacterial and yeast esterases that allow the appropriate quantification of PhytoPs and PhytoFs. To obtain the highest concentration of PhytoPs and PhytoFs, a response surface methodology/Box-Behnken design was used to optimize the hydrolysis conditions. Based on the information available in the literature on the most critical parameters that influence the activity of esterases, the three variables selected for the study were temperature (°C), time (min), and enzyme concentration (%). The optimal hydrolysis conditions retrieved differed between PhytoPs (21.5 °C, 5.7 min, and 0.61 μg of enzyme per reaction) and PhytoFs (20.0 °C, 5.0 min, and 2.17 μg of enzyme per reaction) and provided up to 25.1- and 1.7-fold higher contents relative to nonhydrolyzed extracts. The models were validated by comparing theoretical and experimental values for PhytoP and PhytoF yields (1.01 and 1.06 theoretical/experimental rates, respectively). The optimal conditions were evaluated for their relative influence on the yield of individual nonesterified PhytoPs and PhytoFs to define the limitations of the models for obtaining the highest concentration of most considered compounds. In conclusion, the models developed provided valuable alternatives to the currently applied methods using unspecific alkaline hydrolysis to obtain free nonesterified PhytoPs and PhytoFs, which give rise to more specific hydrolysis of PhytoP and PhytoF esters, reducing the degradation of free compounds by classical chemical procedures.
Collapse
Affiliation(s)
- R Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - I Sánchez-Martínez
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - M D Rodríguez-Hernández
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - I López-González
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - C Oger
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - A Guy
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - J M Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - F Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
57
|
Ke J, Jiang G, Shen G, Wu H, Liu Y, Zhang Z. Optimization, characterization and rheological behavior study of pectin extracted from chayote (Sechium edule) using ultrasound assisted method. Int J Biol Macromol 2020; 147:688-698. [DOI: 10.1016/j.ijbiomac.2020.01.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 01/28/2023]
|
61
|
Loretta B, Oliviero M, Vittorio M, Bojórquez-Quintal E, Franca P, Silvia P, Fabio Z. Quality by design approach to optimize cladodes soluble fiber processing extraction in Opuntia ficus indica (L.) Miller. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:3627-3634. [PMID: 31413390 PMCID: PMC6675920 DOI: 10.1007/s13197-019-03794-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/22/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
Abstract
Opuntia ficus indica by-products can be exploited as sources of high-value components for applications in food and other industries. The aim of the present work is to elucidate and optimize the mucilage extraction process from cladodes. The effect of five water-to-biomass ratios (1:1, 1:3, 1:5, 1:7, 1:9 w/v), pH range (2.0, 4.5, 7.0, 9.5, 12.0) and ionic strength (water supplemented with NaCl or CaCl2 at the concentration of 0.1, 1.0, 10.0 and 100.0 mM) were evaluated on mucilage yield. The analysis of the critical factors was done by the response surface methodology. Ultrasound and microwave assisted extractions were evaluated to improve the mucilage recovery and quality. In this work: (1) the development of a multivariate model to predict mucilage recovery on the basis of biomass/water ratio and time of extraction; (2) pH, ionic strength and temperature were found critical process variables by the application of Plackett-Burman design; (3) the optimal operating conditions obtained were found to be: 1:9 biomass/water ratio, pH 12.0, ionic strength 1.0 mM NaCl; (4) ultrasonic or microwave treatments are efficient tools to enhance the recovery of mucilage depending on its final uses. Within a multi-disciplinary approach, this work provides achievements for a more efficient extraction process of soluble polymers from cladodes. Further studies on green assisted extraction tools and their effects in terms of quality of extracts are required in order to obtain high added value bio-products.
Collapse
Affiliation(s)
- Bacchetta Loretta
- Department of Sustainability of Production and Territorial Systems, ENEA, Via Anguillarese, 301 Rome, Italy
| | - Maccioni Oliviero
- Department of Sustainability of Production and Territorial Systems, ENEA, Via Anguillarese, 301 Rome, Italy
| | - Martina Vittorio
- Department of Sustainability of Production and Territorial Systems, ENEA, Via Anguillarese, 301 Rome, Italy
| | - Emanuel Bojórquez-Quintal
- CONACYT-El Colegio de Michoacán Laboratorio de Análisis y Diagnóstico del Patrimonio, Cerro de Nahuatzen 85, La Piedad, Michoacán Mexico
| | - Persia Franca
- Department of Sustainability of Production and Territorial Systems, ENEA, Via Anguillarese, 301 Rome, Italy
| | - Procacci Silvia
- Department of Sustainability of Production and Territorial Systems, ENEA, Via Anguillarese, 301 Rome, Italy
| | - Zaza Fabio
- Department of Sustainability of Production and Territorial Systems, ENEA, Via Anguillarese, 301 Rome, Italy
| |
Collapse
|
64
|
Ferreira SL, Silva Junior MM, Felix CS, da Silva DL, Santos AS, Santos Neto JH, de Souza CT, Cruz Junior RA, Souza AS. Multivariate optimization techniques in food analysis – A review. Food Chem 2019; 273:3-8. [DOI: 10.1016/j.foodchem.2017.11.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
|