51
|
Comparing characteristic aroma components of bead-shaped green teas from different regions using headspace solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry combined with chemometrics. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03514-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
52
|
Yan S, Zhou Z, Wang K, Song S, Shao H, Yang X. Chemical profile and antioxidant potential of extractable and non‐extractable polyphenols in commercial teas at different fermentation degrees. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shuaishuai Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry Shaanxi Engineering Laboratory for Food Green Processing and Security Control College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Zhihao Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry Shaanxi Engineering Laboratory for Food Green Processing and Security Control College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Kaijie Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry Shaanxi Engineering Laboratory for Food Green Processing and Security Control College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Shixi Song
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry Shaanxi Engineering Laboratory for Food Green Processing and Security Control College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Hongjun Shao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry Shaanxi Engineering Laboratory for Food Green Processing and Security Control College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Xingbin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry Shaanxi Engineering Laboratory for Food Green Processing and Security Control College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| |
Collapse
|
53
|
Yu P, Huang H, Zhao X, Zhong N, Zheng H, Gong Y. Distinct variation in taste quality of Congou black tea during a single spring season. Food Sci Nutr 2020; 8:1848-1856. [PMID: 32328250 PMCID: PMC7174197 DOI: 10.1002/fsn3.1467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The quality of Congou black tea fluctuates greatly with the changing seasons. However, variations in the taste quality of Congou black tea manufactured during a single spring season are far from clear. Here, we analyzed the taste quality of HuangJinCha (HJC) Congou black tea using sensory evaluation and found the taste quality of black tea manufactured in the early spring was better than that manufactured in the late spring. Principal component analysis (PCA) and cluster analysis for the data from the electronic tongue confirmed the variation and revealed that April 4 may be the critical time point at which variations in taste quality become apparent. The contents of tea polyphenols (TP), total catechins (TC), total flavones, (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), and gallic acid (GA) showed increasing trends, whereas total amino acids (TAA) declined over time. Moreover, the variations in total amino acids (r = 0.846) and total flavones (r = - 0.858) were highly significantly correlated with the average taste quality score (p < .01), suggesting these compounds were the primary factors responsible for the fluctuation in taste quality of Congou black tea processed during a single spring season.
Collapse
Affiliation(s)
- Penghui Yu
- Key Laboratory of Tea Science of Ministry of EducationHunan Agricultural UniversityChangshaChina
- Tea Research Institute of Hunan Academy of Agricultural SciencesChangshaChina
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from BotanicalsHunan Agricultural UniversityChangshaChina
| | - Hao Huang
- Tea Research Institute of Hunan Academy of Agricultural SciencesChangshaChina
| | - Xi Zhao
- Tea Research Institute of Hunan Academy of Agricultural SciencesChangshaChina
| | - Ni Zhong
- Tea Research Institute of Hunan Academy of Agricultural SciencesChangshaChina
| | - Hongfa Zheng
- Tea Research Institute of Hunan Academy of Agricultural SciencesChangshaChina
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of EducationHunan Agricultural UniversityChangshaChina
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from BotanicalsHunan Agricultural UniversityChangshaChina
| |
Collapse
|
54
|
Li X, Cao M, Ma W, Jia C, Li J, Zhang M, Liu C, Cao Z, Faruque MO, Hu X. Annotation of genes involved in high level of dihydromyricetin production in vine tea (Ampelopsis grossedentata) by transcriptome analysis. BMC PLANT BIOLOGY 2020; 20:131. [PMID: 32228461 PMCID: PMC7106717 DOI: 10.1186/s12870-020-2324-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Leaves of the medicinal plant Ampelopsis grossedentata, which is commonly known as vine tea, are used widely in the traditional Chinese beverage in southwest China. The leaves contain a large amount of dihydromyricetin, a compound with various biological activities. However, the transcript profiles involved in its biosynthetic pathway in this plant are unknown. RESULTS We conducted a transcriptome analysis of both young and old leaves of the vine tea plant using Illumina sequencing. Of the transcriptome datasets, a total of 52.47 million and 47.25 million clean reads were obtained from young and old leaves, respectively. Among 471,658 transcripts and 177,422 genes generated, 7768 differentially expressed genes were identified in leaves at these two stages of development. The phenylpropanoid biosynthetic pathway of vine tea was investigated according to the transcriptome profiling analysis. Most of the genes encoding phenylpropanoid biosynthesis enzymes were identified and found to be differentially expressed in different tissues and leaf stages of vine tea and also greatly contributed to the biosynthesis of dihydromyricetin in vine tea. CONCLUSIONS To the best of our knowledge, this is the first formal study to explore the transcriptome of A. grossedentata. The study provides an insight into the expression patterns and differential distribution of genes related to dihydromyricetin biosynthesis in vine tea. The information may pave the way to metabolically engineering plants with higher flavonoid content.
Collapse
Affiliation(s)
- Xiaohua Li
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Minhui Cao
- Department of Chemistry, College of Science, Huazhong Agriculture University, Wuhan, Hubei China
| | - Weibo Ma
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei China
| | - Jinghuan Li
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mingxing Zhang
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changchun Liu
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhenzhen Cao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei China
| | - Mohammad Omar Faruque
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuebo Hu
- Laboratory of Natural Medicine and Molecular Engineering, Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei China
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation; Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
55
|
Chai Z, Tian L, Yu H, Zhang L, Zeng Q, Wu H, Yan Z, Li D, Hutabarat RP, Huang W. Comparison on chemical compositions and antioxidant capacities of the green, oolong, and red tea from blueberry leaves. Food Sci Nutr 2020; 8:1688-1699. [PMID: 32180976 PMCID: PMC7063381 DOI: 10.1002/fsn3.1455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Blueberry leaves, by‐products of the blueberry industry, could be explored as source of functional foods, such as teas. Three different types of tea, including nonfermented green tea, semifermented oolong tea, and fully fermented red tea from blueberry leaves, were investigated on their chemical compositions and antioxidant capacities here. The contents of individual amino acids in three types varied, while the total amounts retained constant. A total of 167 volatiles were detected with alcohols, alkenes, and aldehydes as the dominant. More volatiles produced in the fermented teas. The total phenolic/flavonoid contents were highest in the green tea and decreased significantly in the oolong and red teas, correlating inversely with the fermentation degree. The highest levels of representative phenolics, that is, phenolic acids and flavonol glycosides, contributed to the strongest antioxidant capacity in the green tea. These indicated that blueberry leaves provided promising and prospective potential to develop new teas beneficial for health.
Collapse
Affiliation(s)
- Zhi Chai
- Institute of Agro-Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Liangliang Tian
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences Nanjing PR China
| | - Hong Yu
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences Nanjing PR China
| | - Liangcong Zhang
- Institute of Agro-Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China.,Institute of Translational Medicine & Medical College Yangzhou University Yangzhou PR China
| | - Qilong Zeng
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences Nanjing PR China
| | - Han Wu
- Institute of Agro-Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Zheng Yan
- Institute of Agro-Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Dajing Li
- Institute of Agro-Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Ruth Paulina Hutabarat
- Institute of Agro-Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Jiangsu Academy of Agricultural Sciences Nanjing PR China.,School of Food and Biological Engineering Jiangsu University Zhenjiang PR China
| |
Collapse
|
56
|
Zhou Z, Wu Q, Yao Z, Deng H, Liu B, Yue C, Deng T, Lai Z, Sun Y. Dynamics of ADH and related genes responsible for the transformation of C 6-aldehydes to C 6-alcohols during the postharvest process of oolong tea. Food Sci Nutr 2020; 8:104-113. [PMID: 31993137 PMCID: PMC6977495 DOI: 10.1002/fsn3.1272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023] Open
Abstract
Aroma is an important index of tea quality. The volatile C6-compounds formed from linoleic and linolenic acids in tea leaf lipids are essential components of tea. C6-compounds are formed and transformed during the postharvest process of tea leaves. However, the metabolic flux of these C6-compounds, the activities of related enzymes, and the transcription of related genes during the postharvest process of oolong tea remain unclear. In this study, the chemical profiles of C6-aldehydes and C6-alcohols, the pattern of ADH enzyme activity, and the level of CsADH gene expression during the postharvest process of oolong tea were investigated. We found that the turnover process had a positive effect on the accumulation of C6-alcohols and simultaneously induced ADH activity, especially during the withering stage. The expression of CsADH peaked during the turnover stage. The relative expression level of CSA019598 typically increased during the postharvest process. Correlation analysis demonstrated that CSA019598 expression increased as ADH activity increased. This finding suggests that CSA019598 may play a prominent role in regulating ADH. These results advance our understanding of C6-compound formation during the postharvest process of oolong tea. We aim to evaluate how green leaf volatiles affect the enzymatic formation and genetic transcription of aromatic compounds in oolong tea in future studies.
Collapse
Affiliation(s)
- Zi‐Wei Zhou
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Horticultural BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qing‐Yang Wu
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Horticultural BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Ling Yao
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Hui‐Li Deng
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Horticultural BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Bin‐Bin Liu
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Horticultural BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chuan Yue
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Ting‐Ting Deng
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhong‐Xiong Lai
- Institute of Horticultural BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yun Sun
- Key Laboratory of Tea Science in Fujian ProvinceCollege of Horticulture Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
57
|
Zhang Q, Li T, Wang Q, LeCompte J, Harkess RL, Bi G. Screening Tea Cultivars for Novel Climates: Plant Growth and Leaf Quality of Camellia sinensis Cultivars Grown in Mississippi, United States. FRONTIERS IN PLANT SCIENCE 2020; 11:280. [PMID: 32231677 PMCID: PMC7083152 DOI: 10.3389/fpls.2020.00280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
The United States (U.S.) consumed over 80 billion servings of tea, approximately 3.8 billion gallons, in the year of 2018. With the vast majority of tea demand being met by importation, the United States became the third largest tea importer worldwide after Russia and Pakistan. As demand for domestically produced tea increases and growers expressing increasing interest in growing and producing tea, tea production became an emerging industry in the United States. Compared to major tea producing countries with centuries of growing history, tea production in the United States is limited and requires research support in many aspect of tea production including selecting suitable cultivars adapted to local climatic conditions. This study evaluated nine tea cultivars, including 'BL1,' 'BL2,' 'Black Sea,' 'Christine's Choice,' 'Dave's Fave,' 'Large Leaf,' 'Small Leaf,' 'Sochi,' and 'var. assamica,' for plant growth, leaf morphological characteristics, cold tolerance, and leaf biochemical compositions when grown in Mississippi United States with a subtropical climate. The nine tested cultivars had varying plant growth indices (PGI) and varying degrees of cold tolerance to freezing temperatures in winter, but resumed healthy growth the following spring. 'BL2' showed the highest PGI of 104.53 cm by February 2019, which might be helpful toward suppressing weed and early establishment of tea plantation. The nine cultivars also showed varying leaf characteristics in terms of leaf length, width, area, fresh and dry weights, and new shoot weight. There existed a diversity in leaf biochemical composition including soluble solids, carbohydrates, total polyphenols (TP), free amino acids (AA), L-theanine and caffeine among the nine cultivars and among different harvesting seasons of spring, summer, and fall within a certain cultivar. The nine cultivars in this study generally grow well in local environment. All tea samples collected from nine cultivars and three seasons were considered suitable for green tea processing with low TP/AA ratios ranging from 1.72 to 3.71 in this study.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Tongyin Li
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Judson LeCompte
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Richard L. Harkess
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Guihong Bi
- Department of Plant and Soil Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
- *Correspondence: Guihong Bi,
| |
Collapse
|
58
|
Wu L, Huang X, Liu S, Liu J, Guo Y, Sun Y, Lin J, Guo Y, Wei S. Understanding the formation mechanism of oolong tea characteristic non-volatile chemical constitutes during manufacturing processes by using integrated widely-targeted metabolome and DIA proteome analysis. Food Chem 2019; 310:125941. [PMID: 31835227 DOI: 10.1016/j.foodchem.2019.125941] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
To interpret the enzymatic modulation of the dynamic changes of small molecules in tea leaves during oolong tea manufacturing process, the metabolomic and proteomic studies were performed using processed leaf samples collected at the different manufacturing stages and non-processed fresh leaves as control. As a result, a total of 782 metabolites were identified, of which 46, as the biomarkers, were significantly changed over the manufacturing process. Totally 7245 proteins were qualitatively and quantitativelydetermined. The abundance of multiple enzymes including phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was positively associated with the dynamic changes of their corresponding catalytic products. The overall protein-metabolite association analysis showed that over the enzymatic-catalyzed process production of some non-volatile components, such like carbohydrates, amino acids and flavonoids, were related with the abundance of those responsible proteins in different extents and potentially contributed to the comprehensive flavor of oolong tea.
Collapse
Affiliation(s)
- Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, PR China
| | - Xujian Huang
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, PR China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave West, Hefei 230036, Anhui, PR China
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, PR China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, PR China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, PR China
| | - Jinke Lin
- College of Anxi Tea, Fujian Agriculture and Forestry University, Cannei Village, Quanzhou, Fujian 362000, PR China
| | - Yaling Guo
- College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, PR China.
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave West, Hefei 230036, Anhui, PR China.
| |
Collapse
|
59
|
Wang Q, Chen D, Zhang Q, Qin D, Jiang X, Li H, Fang K, Cao J, Wu H. Volatile components and nutritional qualities of Viscum articulatum Burm.f. parasitic on ancient tea trees. Food Sci Nutr 2019; 7:3017-3029. [PMID: 31572595 PMCID: PMC6766576 DOI: 10.1002/fsn3.1159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 11/11/2022] Open
Abstract
Volatile flavor compounds (VFCs) and nutrients in Viscum articulatum Burm.f. parasitic on ancient tea trees (named TM) were studied in this research by headspace solid-phase microextraction (HS-SPME)/gas chromatography-mass spectrometry (GC-MS) and conventional methods. Sixty-six volatile compounds belonging to different classes were identified by GC-MS. The ketones, alcohols, and aldehydes were the principal aroma groups in TM according to principle component analysis (PCA). The most abundant aroma components in TM included benzaldehyde (9.64%), geranylacetone (7.92%), epoxy-β-ionone (7.71%), β-linalool (7.35%), methyl salicylate (6.96%), and hotrienol (6.14%), significantly higher than CKs (p < .05). The positive PC1 and PC2 in TM were correlated with benzaldehyde, hotrienol, methyl salicylate, and geranylacetone. The mistletoes could be differentiated from CKs due to the difference in aroma compounds. Clean and fresh, woody and nutty odor with minor floral scent was the characteristics of TM. Analysis of the nutritional components showed that contents of polyphenols and catechins in TM were at trace levels, significantly lower than CKs (p < .05). The total contents of polyphenols, amino acids, carbohydrates, and caffeine in TM were significantly lower from the total soluble solids (p < .05), indicating that there were still lots of compounds undetected in TM. The sensory test showed that the taste and aroma in TM can be accepted, which indicates TM could be developed into alternative tea drinks in the future.
Collapse
Affiliation(s)
- Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Dong Chen
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Qianwen Zhang
- Department of Plant and Soil SciencesMississippi State UniversityStarkvilleMSUSA
| | - Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Xiaohui Jiang
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Hongjian Li
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory of Tea Plant Resources Innovation & UtilizationGuangzhouChina
| |
Collapse
|
60
|
Megías-Pérez R, Shevchuk A, Zemedie Y, Kuhnert N. Characterization of commercial green tea leaves by the analysis of low molecular weight carbohydrates and other quality indicators. Food Chem 2019; 290:159-167. [DOI: 10.1016/j.foodchem.2019.03.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
61
|
Wang Y, Kong D, Gao Y, Ying L, Huang Q, Xu P. Chemical characterization and bioactivity of phenolics from Tieguanyin oolong tea. J Food Biochem 2019; 43:e12894. [PMID: 31353716 DOI: 10.1111/jfbc.12894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 01/13/2023]
Abstract
Phenolics are the main bioactive components in tea and greatly contribute to human health. Three phenolic-enriched extracts, the ethyl acetate fraction (TEF), n-butanol fraction (TBF), and water fraction (TWF), were obtained from Tieguanyin oolong tea, which is considered a typical type of semi-fermented tea. The chemicals in the extracts and their antioxidant activity and cytotoxicity against 4T1 breast cancer cells were investigated in the present work. TEF was found to have the highest contents of phenolics, flavonoids, procyanidins, sugars, and catechin monomers. Meanwhile, TEF exhibited the strongest antioxidant capacity, which may be due to its abundant bioactive compounds, as validated by Pearson correlation and hierarchical clustering analysis. Furthermore, TEF showed greater inhibition of the growth of 4T1 murine breast cancer cells than TBF and TWF. PRACTICAL APPLICATIONS: Fermentation during the processing of oolong tea causes many alterations in polyphenols, leading to different bioactivities. In the present work, three phenolic-enriched extracts, the ethyl acetate fraction (TEF), n-butanol fraction (TBF), and water fraction (TWF), were obtained from Tieguanyin oolong tea. Further tests showed that TEF and TBF from Tieguanyin oolong tea possessed remarkable antioxidant activity and inhibitory potential inhibition of the growth of 4T1 murine breast cancer cells in vitro due to their main bioactive compounds, including phenolics and flavonoids. Thus, the phenolic-enriched extracts from Tieguanyin tea are expected to have a potential application in the food and pharmaceutical industries after further study.
Collapse
Affiliation(s)
- Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou, P.R. China
| | - Dedong Kong
- Department of Tea Science, Zhejiang University, Hangzhou, P.R. China
| | - Yuanyuan Gao
- Department of Tea Science, Zhejiang University, Hangzhou, P.R. China
| | - Le Ying
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Qianfei Huang
- Zhejiang Academy of Medical Science, Hangzhou, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
62
|
Zhou P, Hu O, Fu H, Ouyang L, Gong X, Meng P, Wang Z, Dai M, Guo X, Wang Y. UPLC-Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations. Food Chem 2019; 283:73-82. [PMID: 30722928 DOI: 10.1016/j.foodchem.2019.01.050] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/05/2018] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
Abstract
The taste and aroma quality of Tieguanyin tea fluctuate seasonally and yearly. However, the compounds responsible for the seasonal and year variations of metabolic pattern and its sensory quality are far from clear. 60 Tieguanyin tea samples harvested in different years and seasons were analyzed by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and chemometrics. Principal component analysis (PCA) explained 33.2% of the total variance, while orthogonal projection to latent structures discriminate analysis (OPLS-DA) can obtain potential metabolites with better discrimination, and with R2X and Q2 of cross-validation as 0.974 and 0.937, respectively. Subsequently, heat map analysis (HCA) visualized relationships between Tieguanyin teas with these significantly different potential metabolites by Mann-Whitney U test (p < 0.05). Furthermore, the best discriminate metabolites contributing to different sensory qualities were revealed by stepwise liner discrimination analysis (SLDA) with 100% accuracy rate. The present strategy also exhibited great potential for untargeted metabolomics of other foods.
Collapse
Affiliation(s)
- Peng Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; China National Quality Supervision and Testing Center for Processed Food (FuZhou), Fujian Inspection and Research Institute for Product Quality, Fuzhou 350002, PR China
| | - Ou Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Liqun Ouyang
- China National Quality Supervision and Testing Center for Processed Food (FuZhou), Fujian Inspection and Research Institute for Product Quality, Fuzhou 350002, PR China
| | - Xuedong Gong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Peng Meng
- China National Quality Supervision and Testing Center for Processed Food (FuZhou), Fujian Inspection and Research Institute for Product Quality, Fuzhou 350002, PR China
| | - Zheng Wang
- China National Quality Supervision and Testing Center for Processed Food (FuZhou), Fujian Inspection and Research Institute for Product Quality, Fuzhou 350002, PR China
| | - Ming Dai
- China National Quality Supervision and Testing Center for Processed Food (FuZhou), Fujian Inspection and Research Institute for Product Quality, Fuzhou 350002, PR China
| | - Xiaoming Guo
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Ying Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
63
|
Chen S, Lin J, Liu H, Gong Z, Wang X, Li M, Aharoni A, Yang Z, Yu X. Insights into Tissue-specific Specialized Metabolism in Tieguanyin Tea Cultivar by Untargeted Metabolomics. Molecules 2018; 23:molecules23071817. [PMID: 30037120 PMCID: PMC6099842 DOI: 10.3390/molecules23071817] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Tea plants produce extremely diverse and abundant specialized metabolites, the types and levels of which are developmentally and environmentally regulated. However, little is known about how developmental cues affect the synthesis of many of these molecules. In this study, we conducted a comparative profiling of specialized metabolites from six different tissues in a premium oolong tea cultivar, Tieguanyin, which is gaining worldwide popularity due to its uniquely rich flavors and health benefits. UPLC-QTOF MS combined with multivariate analyses tentatively identified 68 metabolites belonging to 11 metabolite classes, which exhibited sharp variations among tissues. Several metabolite classes, such as flavonoids, alkaloids, and hydroxycinnamic acid amides were detected predominantly in certain plant tissues. In particular, tricoumaroyl spermidine and dicoumaroyl putrescine were discovered as unique tea flower metabolites. This study offers novel insights into tissue-specific specialized metabolism in Tieguanyin, which provides a good reference point to explore gene-metabolite relationships in this cultivar.
Collapse
Affiliation(s)
- Si Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jun Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Huihui Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhihong Gong
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Meihong Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Asaph Aharoni
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, P. O. Box 26, Rehovot 7610001, Israel.
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|