51
|
Patiño-Rodríguez O, Agama-Acevedo E, Ramos-Lopez G, Bello-Pérez LA. Unripe mango kernel starch: Partial characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Kringel DH, Dias ARG, Zavareze EDR, Gandra EA. Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. STARCH-STARKE 2020. [DOI: 10.1002/star.201900200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dianini Hüttner Kringel
- Department of Agroindustrial Science and TechnologyFederal University of Pelotas 96010–900 Pelotas Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and TechnologyFederal University of Pelotas 96010–900 Pelotas Brazil
| | | | - Eliezer Avila Gandra
- Laboratory of Food Science and Molecular BiologyCenter for Chemical, Pharmaceutical and Food SciencesUniversidade Federal de Pelotas 96010–900 Pelotas Brazil
| |
Collapse
|
53
|
Gao L, Xia M, Li Z, Wang M, Wang P, Yang P, Gao X, Gao J. Common buckwheat-resistant starch as a suitable raw material for food production: A structural and physicochemical investigation. Int J Biol Macromol 2019; 145:145-153. [PMID: 31846660 DOI: 10.1016/j.ijbiomac.2019.12.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022]
Abstract
Heat-moisture treatment (HMT) of starch is defined as a physical method to change its properties. Compared with maize and potato, starches from common buckwheat (Xinong9976 and Pingqiao2) were isolated and its morphology and physicochemical properties investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), ATR-FTIR analysis, rapid viscosity analyzer (RVA) and differential scanning calorimeter (DSC) were studied before and after HMT. The experimental results showed that there were obvious differences between native starch (NS) and resistant starch (RS) of common buckwheat. HMT altered the A-type crystalline pattern and the degree of short-range order of common buckwheat starches and significantly decreased water solubility, swelling power (70-90 °C), freeze-thaw stability and pasting properties and increased oil and water absorption capacities, light transmittance as well as thermal stability. This study shows that the NS and RS of common buckwheat can be used as the suitable raw materials in food processing.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meijuan Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhonghao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
54
|
Cao TL, Song KB. Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105198] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Yang Q, Liu L, Zhang W, Li J, Gao X, Feng B. Changes in Morphological and Physicochemical Properties of Waxy and Non-waxy Proso Millets during Cooking Process. Foods 2019; 8:foods8110583. [PMID: 31744184 PMCID: PMC6915442 DOI: 10.3390/foods8110583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/28/2022] Open
Abstract
Proso millet, a grain which is principally consumed in cooked form, is favored by consumers because of its rich nutritional value. However, the changes in morphological and physicochemical properties of proso millet grains occurring during the cooking process have rarely been reported. In this study, we investigated the changes in morphological and physicochemical properties of cooked waxy and non-waxy proso millets. During the cooking process, starch granules in the grains were gradually gelatinized starting from the outer region to the inner region and were gelatinized earlier in waxy proso millet than in non-waxy proso millet. Many filamentous network structures were observed in the cross sections of cooked waxy proso millet. As the cooking time increased, the long- and short-range, ordered structures of proso millets were gradually disrupted, and the ordered structures were fully disrupted by 20 min of cooking. In both waxy and non-waxy proso millets, thermal and pasting properties significantly changed with an increase in the cooking time. This study provides useful information for the processing of proso millet in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Baili Feng
- Correspondence: ; Tel.: +86-029-8708-2889
| |
Collapse
|
56
|
Structural, thermal, and hydrolysis properties of large and small granules from C-type starches of four Chinese chestnut varieties. Int J Biol Macromol 2019; 137:712-720. [DOI: 10.1016/j.ijbiomac.2019.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
|
57
|
Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00207-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
58
|
Physicochemical Properties of Starches in Proso (Non-Waxy and Waxy) and Foxtail Millets (Non-Waxy and Waxy). Molecules 2019; 24:molecules24091743. [PMID: 31060302 PMCID: PMC6539057 DOI: 10.3390/molecules24091743] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/03/2022] Open
Abstract
Proso and foxtail millets are widely cultivated due to their excellent resistance to biotic and abiotic stresses and high nutritional value. Starch is the most important component of millet kernels. Starches with different amylose contents have different physicochemical properties. In this study, starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy) were isolated and investigated. All the starch granules had regular polygonal round shapes and exhibited typical “Maltese crosses”. These four starches all showed bimodal size distribution. The waxy proso and foxtail millets had higher weight-average molar mass and branching degree and lower average chain length of amylopectin. These four starches all presented A-type crystallinity; however, the relative crystallinity of waxy proso and foxtail millets was higher. The two waxy millets had higher onset temperature, peak temperature, conclusion temperature, and gelatinization enthalpy. However, the two non-waxy millets had higher setback viscosity, peak time, and pasting temperature. The significantly different physicochemical properties of waxy and non-waxy millet starches resulted in their different functional properties.
Collapse
|
59
|
Yang Q, Zhang W, Luo Y, Li J, Gao J, Yang P, Gao X, Feng B. Comparison of structural and physicochemical properties of starches from five coarse grains. Food Chem 2019; 288:283-290. [PMID: 30902294 DOI: 10.1016/j.foodchem.2019.02.134] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022]
Abstract
Starch, one of the most important components of coarse grains, has received widespread attention because of its prominent potential health benefits. In the present study, we isolated starches from the grains of sorghum, tartary buckwheat, common buckwheat, mungbean, and pea and studied their structural and physicochemical properties. These five starches all showed the distinctive "Maltese cross" effect (birefringence) but significantly differed in morphology, size, and complexity of granules. Sorghum starch exhibited the lowest amylose content and highest weight-average molar mass. Mungbean contained more short amylopectin [degree of polymerization (DP) 6-12 = 23.4%]. Pea starch exhibited the highest amylose content, highest amylopectin average chain length, and lowest weight-average molar mass. The starches of sorghum, tartary buckwheat, and common buckwheat showed A-type crystallinity, whereas those of mungbean and pea showed C-type crystallinity. Our results provide useful information for the application of coarse grain starches in diverse industries.
Collapse
Affiliation(s)
- Qinghua Yang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| | - Weili Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Yan Luo
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jing Li
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jinfeng Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Pu Yang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Xiaoli Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| | - Baili Feng
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
60
|
Lin L, Guo K, Zhang L, Zhang C, Liu Q, Wei C. Effects of molecular compositions on crystalline structure and functional properties of rice starches with different amylopectin extra-long chains. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
61
|
Hierarchical Structure, Gelatinization, and Digestion Characteristics of Starch from Longan (Dimocarpus longan Lour.) Seeds. Molecules 2018; 23:molecules23123262. [PMID: 30544737 PMCID: PMC6321464 DOI: 10.3390/molecules23123262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/24/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
Starch was isolated from longan seeds of three widely distributed cultivars (Chuliang, Shixia, and Caopu) in China. Comparisons of the multi-level structure of the starch of longan seeds among various cultivars were made, and the relations between these structural and property characteristics are discussed. The isolated starch, accounting for 44.9–49.5% (w/w) in longan seeds, had an oval or an irregular polygonal shape with a smooth surface. Their chain-length distributions (CLDs) varied with longan cultivar; Chuliang showed a larger proportion of longer amylopectin chains with a degree of polymerization (DP) 30~100. This is attributed to the slightly higher relative crystallinity of Chuliang longan seed starch. Apparent differences were also detected in amylose structure. Caopu showed a higher amylose content than Chuliang and Shixia, resulting in its lower gelatinization temperatures and enthalpy change. All longan seed starch had a typical A-type crystal structure with relative crystallinity ranging 28.6–28.9%. For raw starch, Caopu showed the lowest digestion rate, followed by Chuliang; Shixia showed the highest. This is because Caopu had the highest amylose content. Chuliang had a more intact structure than Shixia, as suggested by its higher crystallinity, although they had similar amylose content. After being fully gelatinized, all starch showed a similar digestion process, indicating that the digestibility of gelatinized starch does not differ with starch source or structure.
Collapse
|
62
|
Zhang L, Liu T, Hu G, Guo K, Wei C. Comparison of Physicochemical Properties of Starches from Nine Chinese Chestnut Varieties. Molecules 2018; 23:molecules23123248. [PMID: 30544638 PMCID: PMC6321317 DOI: 10.3390/molecules23123248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
Chestnut is a popular food in many countries and is also an important starch source. In previous studies, physicochemical properties of starches have been compared among different Chinese chestnut varieties growing under different conditions. In this study, nine Chinese chestnut varieties from the same farm were investigated for starch physicochemical properties to exclude the effects of growing conditions. The dry kernels had starch contents from 42.7 to 49.3%. Starches from different varieties had similar morphologies and exhibited round, oval, ellipsoidal, and polygonal shapes with a central hilum and smooth surface. Starch had bimodal size distribution and the volume-weighted mean diameter ranged from 7.2 to 8.2 μm among nine varieties. The starches had apparent amylose contents from 23.8 to 27.3% but exhibited the same C-type crystalline structure and similar relative crystallinity, ordered degree, and lamellar structure. The gelatinization onset, peak, and conclusion temperatures ranged from 60.4 to 63.9 °C, from 64.8 to 68.3 °C, and from 70.5 to 74.5 °C, respectively, among nine starches; and the peak, hot, breakdown, final, and setback viscosities ranged from 5524 to 6505 mPa s, from 3042 to 3616 mPa s, from 2205 to 2954 mPa s, from 4378 to 4942 mPa s, and from 1326 to 1788 mPa s, respectively. The rapidly digestible starch, slowly digestible starch, and resistant starch ranged from 2.6 to 3.7%, from 5.7 to 12.7%, and from 84.4 to 90.7%, respectively, for native starch, and from 79.6 to 89.5%, from 1.3 to 3.8%, and from 7.1 to 17.4%, respectively, for gelatinized starch.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Tianxiang Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Guanglong Hu
- Institute of Forest and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China.
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
63
|
Cornejo-Ramírez YI, Martínez-Cruz O, Del Toro-Sánchez CL, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ. The structural characteristics of starches and their functional properties. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1518343] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Oliviert Martínez-Cruz
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México. C.P
| | | | | | - Jesús Borboa-Flores
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México. C.P
| | | |
Collapse
|
64
|
Li Z, Guo K, Lin L, He W, Zhang L, Wei C. Comparison of Physicochemical Properties of Starches from Flesh and Peel of Green Banana Fruit. Molecules 2018; 23:E2312. [PMID: 30208563 PMCID: PMC6225278 DOI: 10.3390/molecules23092312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022] Open
Abstract
Green banana fruit is an important starch resource that consists of flesh and peel. The physicochemical properties of flesh starch have been widely studied; however, those of peel starch have hardly been studied, leading to the waste of peel. In this study, the physicochemical properties of the starches from the flesh and peel of green banana fruit were investigated and compared. The dry flesh and peel had 69.5% and 22.6% starch content, respectively. The starch had oval and irregular granules with eccentric hila. Their starches had similar bimodal size distribution; the volume-weighted mean diameter was approximate 17 μm, and the peel starch had a slightly smaller granule size than the flesh starch. The maximum absorption wavelength was higher in peel starch than in flesh starch. The apparent amylose content of flesh and peel starch was 21.3% and 25.7%, respectively. The flesh and peel starches both exhibited B-type crystalline structures and had similar relative crystallinity, short-range ordered degrees, and lamellar structures. The swelling power was similar between flesh and peel starches, but the water solubility was higher in peel starch than in flesh starch at 95 °C. The peel starch had a higher gelatinization temperature than flesh starch, but their gelatinization temperature range and enthalpy were similar. Both flesh and peel starches showed a diphasic hydrolysis dynamic, but peel starch had higher resistance to porcine pancreatic α-amylase hydrolysis than flesh starch. The contents of rapidly digestible starch, slowly digestible starch, and the resistant starch of flesh and peel were 1.7%, 4.3%, 94.1% and 1.4%, 3.4%, 95.2%, respectively, for native starch, and 73.0%, 5.1%, 21.9%, and 72.3%, 4.5%, 23.2%, respectively, for gelatinized starch.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Wei He
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
65
|
Wang J, Guo K, Fan X, Feng G, Wei C. Physicochemical Properties of C-Type Starch from Root Tuber of Apios fortunei in Comparison with Maize, Potato, and Pea Starches. Molecules 2018; 23:E2132. [PMID: 30149543 PMCID: PMC6225258 DOI: 10.3390/molecules23092132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/02/2022] Open
Abstract
The dry root tuber of Apios fortunei contained about 75% starch, indicating that it is an important starch resource. Starch displayed spherical, polygonal, and ellipsoidal granules with central hila. Granule sizes ranged from 3 to 30 μm with a 9.6 μm volume-weighted mean diameter. The starch had 35% apparent amylose content and exhibited CA-type crystalline structure with 25.9% relative crystallinity. The short-range ordered degree in the granule external region was approximately 0.65, and the lamellar thickness was approximately 9.6 nm. The swelling power and water solubility began to increase from 70 °C and reached 28.7 g/g and 10.8% at 95 °C. Starch had typical bimodal thermal curve in water with gelatinization temperatures from 61.8 to 83.9 °C. The 7% (w/w) starch-water slurry had peak, hot, breakdown, final, and setback viscosities of 1689, 1420, 269, 2103, and 683 mPa s, respectively. Rapidly digestible starch, slowly digestible starch, and resistant starch were 6.04%, 10.96%, and 83.00% in native starch; 83.16%, 15.23%, and 1.61% in gelatinized starch; and 78.13%, 17.88%, and 3.99% in retrograded starch, respectively. The above physicochemical properties of A. fortunei starch were compared with those of maize A-type starch, potato B-type starch, and pea C-type starch. The hierarchical cluster analysis based on starch structural and functional property parameters showed that A. fortunei and pea starches had similar physicochemical properties and were more related to maize starch than potato starch.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Xiaoxu Fan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Gongneng Feng
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
66
|
Nguyen GT, Sopade PA. Modeling Starch Digestograms: Computational Characteristics of Kinetic Models for in vitro Starch Digestion in Food Research. Compr Rev Food Sci Food Saf 2018; 17:1422-1445. [PMID: 33350160 DOI: 10.1111/1541-4337.12384] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Starch digestion is mostly investigated with in vitro techniques, and time-course measurements are common. These yield digestograms that are modeled by theoretical, semitheoretical, and empirical kinetic equations, many of which are reviewed here. The Duggleby model has Michaelis-Menten functions, and its dependent variable is on both sides of the equation with no apparent parameter for maximum digestible starch (D∞ ). The Gaouar and Peleg models are equivalent. They predict both the initial digestible starch (D0 ) and D∞ , and an average digestion rate, but they can reveal "biratial" digestions. The first-order kinetic model exhibits diverse predictabilities and, when linearized, D∞ is sometimes equated to 100 g/100 g dry starch (100%), it yields an average rate of digestion and can predict negative D0 . The log of slope (LOS) model is unique in revealing the rapid-to-slow digestion rate phenomenon, but without guidelines to identify such. The LOS model does not sometimes use all the digestogram data, can predict D∞ greater than 100%, and returns zero digestion rate for some digestograms. However, some starchy materials exhibit a slow-to-rapid digestion rate phenomenon, as demonstrated with an example. The modified first-order kinetic model uses all the digestogram data with practical constraints (D0 ≥ 0 g/100 g dry starch; D∞ ≤ 100 g/100 g dry starch), describes all digestograms, and yields an average digestion rate, but it can also be used for "biratial" digestions. In addition, the logistic and Weibull models are discussed. Using some published data, the computational characteristics of these commonly used models are presented with objective parameters to guide choices.
Collapse
Affiliation(s)
- Giang T Nguyen
- Dept. of Animal Husbandry and Veterinary, Faculty of Agriculture and Natural Resources, An Giang Univ., Long Xuyen City, An Giang Province, Vietnam
| | - Peter A Sopade
- Dept. of Food Science and Engineering, School of Agricultural Sciences, Xichang Univ., Xichang, Sichuan Province, 615013, China.,Food Process Engineering Consultants, Abeokuta Cottage, Tia Lane, Forest Lake, QLD 4078, Australia
| |
Collapse
|