51
|
Rêgo ESB, Rosa CA, Freire AL, Machado AMDR, Gomes FDCO, Costa ASPD, Mendonça MDC, Hernández-Macedo ML, Padilha FF. Cashew wine and volatile compounds produced during fermentation by non-Saccharomyces and Saccharomyces yeast. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Liu S, Laaksonen O, Marsol-Vall A, Zhu B, Yang B. Comparison of Volatile Composition between Alcoholic Bilberry Beverages Fermented with Non- Saccharomyces Yeasts and Dynamic Changes in Volatile Compounds during Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3626-3637. [PMID: 32118429 PMCID: PMC7590984 DOI: 10.1021/acs.jafc.0c01050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The profile of volatile compounds was investigated using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) during bilberry juice fermentation with nine non-Saccharomyces yeasts, including Pachysolen tannophilus, Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Lachancea thermotolerans, Issatchenkia orientalis, and Saccharomycodes ludwigii. Dynamic changes in volatile compounds were determined simultaneously with the development of ethanol concentration during fermentation. H. uvarum or I. orientalis produced more ethyl acetate than other yeast strains throughout fermentation, while fermentation with M. pulcherrima resulted in high accumulation of higher alcohols. S. pombe was associated with high productions of pentane-2,3-dione, 3-hydroxybutan-2-one, 2-methylbutanal, and 3-methylbutanal. Among the 59 volatile compounds detected, generally, higher alcohols and monoterpenes accumulated constantly and reached the maximum concentration at the middle or later fermentation stage, whereas aldehydes, ketones, and acetals accumulated first followed by a significant drop. The production and accumulation dynamics of metabolites were highly dependent on the yeast species and the developing ethanol content.
Collapse
Affiliation(s)
- Shuxun Liu
- Food Chemistry and
Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and
Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Alexis Marsol-Vall
- Food Chemistry and
Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Baoqing Zhu
- Department of Food Science, College of Biological Sciences and Biotechnology,
Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Baoru Yang
- Food Chemistry and
Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
53
|
Hu L, Liu R, Wang X, Zhang X. The Sensory Quality Improvement of Citrus Wine through Co-Fermentations with Selected Non- Saccharomyces Yeast Strains and Saccharomyces cerevisiae. Microorganisms 2020; 8:microorganisms8030323. [PMID: 32110914 PMCID: PMC7143248 DOI: 10.3390/microorganisms8030323] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Co-fermentation of selected non-Saccharomyces yeast strain with Saccharomyces cerevisiae is regarded as a promising approach to improve the sensory quality of fruit wine. To evaluate the effects of co-fermentations between the selected non-Saccharomyces yeast strains (Hanseniaspora opuntiae, Hanseniaspora uvarum and Torulaspora delbrueckii) and S. cerevisiae on the sensory quality of citrus wine, the fermentation processes, the chemical compositions, and the sensory evaluations of citrus wines were analyzed. Compared with those of S. cerevisiae fermentation, co-fermentations produced high sensory qualities, and S. cerevisiae/H. opuntiae co-fermentation had the best sensory quality followed by Sc-Hu and Sc-Td co-fermentations. Additionally, all the co-fermentations had a lower amount of ethanol and total acidity, higher pH value, and higher content of volatile aroma compounds, especially the content of higher alcohol and ester compounds, than those of S. cerevisiae fermentation. Therefore, co-fermentations of the non-Saccharomyces yeast strains and S. cerevisiae could be employed to improve the sensory quality of citrus wines. These results would provide not only methods to improve the sensory quality of citrus wine, but also a valuable reference for the selection of non-Saccharomyces yeast strains for fruit wine fermentation.
Collapse
Affiliation(s)
- Lanlan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-278-7282-927
| |
Collapse
|
54
|
Yan G, Zhang B, Joseph L, Waterhouse AL. Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food Microbiol 2020; 90:103460. [PMID: 32336379 DOI: 10.1016/j.fm.2020.103460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/04/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
The use of Saccharomyces and non-Saccharomyces yeast species as mixed starters has potential advantages over pure culture fermentation due to increased wine complexity based on modification of metabolites of oenological interest. In this work, the effects of initial oxygenation on fermentation performance, chemical and volatile composition of French Colombard wine fermented with Hanseniaspora vineae and Saccharomyces cerevisiae in sequential inoculations were investigated in 1 L flasks. Although dominated by S. cerevisiae at the middle-end of fermentation, initial aeration for 1 day boosted H. vineae populations, and allowed H. vineae to coexist longer with S. cerevisiae in mixed cultures compared to no aeration, and suppressed S. cerevisiae later in the fermentation, which resulted in extended fermentation time. More important, the major fermentation products and volatile compounds were significantly modified by aeration and different from no aeration fermentation. The wines produced by aeration of mixed fermentations were characterized with higher amounts of glycerol, lactic acid and acetate esters, and lower levels of ethanol, higher alcohol and ethyl fatty acid esters. The aeration had more potential to shape the quality of wines and diversify the aromatic characteristics relative to simple mixed inoculation, as indicated by PCA analysis. Our results suggested that the impact of early aeration on yeast physiology extends beyond the aeration phase and influences fermentation activity, chemical and aromatic compounds in the following anaerobic stage. The aeration for a short time during the cell growth stage in mixed fermentation is therefore a potential means to increase the aromatic diversity and quality of wine, possibly providing an alternative approach to meet the expectations of wine consumers for diverse aromatic qualities.
Collapse
Affiliation(s)
- Guoliang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Boqing Zhang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lucy Joseph
- Department of Viticulture and Enology, University of California, Davis, CA, United States
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, United States.
| |
Collapse
|
55
|
Characterization of major properties and aroma profile of kiwi wine co-cultured by Saccharomyces yeast (S. cerevisiae, S. bayanus, S. uvarum) and T. delbrueckii. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03439-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
56
|
Morata A, Escott C, Loira I, Del Fresno JM, González C, Suárez-Lepe JA. Influence of Saccharomyces and non- Saccharomyces Yeasts in the Formation of Pyranoanthocyanins and Polymeric Pigments during Red Wine Making. Molecules 2019; 24:molecules24244490. [PMID: 31817948 PMCID: PMC6943737 DOI: 10.3390/molecules24244490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Yeast are able to modulate many sensory parameters of wines during red must fermentation. The effect on color and on the formation of derived pigments during fermentation has been studied thoroughly since the 90s. Yeast can increase grape anthocyanin’s color by acidification by hyperchromic effect (increase of flavylium molecules). Recent studies with non-Saccharomyces species, as Lachancea thermotolerans, described the intense effect of some strains on anthocyanin’s color, and subsequent, stability, by strongly reducing wine’s pH during fermentation. Moreover, selected yeast strains of Saccharomyces have been shown to release metabolites such as pyruvic acid or acetaldehyde that promote the formation of vitisin A and B pyranoanthocyanins during must fermentation. Schizosaccharomyces pombe, because of its specific metabolism, can produce higher concentrations of pyruvate, which enhances the formation of vitisin A-type derivatives. The hydroxycinnamate decarboxylase activity that some Saccharomyces strains express during fermentation also promotes the formation of vinylphenolic derivatives. Some non-Saccharomyces species, such as S. pombe or P. guilliermondii can also improve the production of these derivatives compared to selected strains of Saccharomyces cerevisiae. Lastly, some yeasts are also able to modulate the formations of polymeric pigments between grape anthocyanins and flavonoids, such as catechins and procyanidins.
Collapse
|
57
|
Schizosaccharomyces pombe can Reduce Acetic Acid Produced by Baijiu Spontaneous Fermentation Microbiota. Microorganisms 2019; 7:microorganisms7120606. [PMID: 31766775 PMCID: PMC6956116 DOI: 10.3390/microorganisms7120606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023] Open
Abstract
The spontaneous fermentation of alcoholic beverage is a bioprocess donated by microbiota with complex stress environments. Among various microbes, non-Saccharomyces yeasts have high stress tolerance and significantly affect the taste and quality of products in process. Although many researchers have focused on the influence of acid stress, the mechanism of non-Saccharomyces yeasts to tolerant stress remains unclear in microbiota. To bridge the gap, we constructed in situ and in vitro studies to explore the reduction pathway of acetic acid in non-Saccharomyces yeasts. In this study, we found Schizosaccharomyces pombe has special capacities to resist 10 g/L acetic acid in laboratory cultures and decrease the average concentration of acetic acid from 9.62 to 6.55 g/kg fermented grains in Chinese Maotai-flavor liquor (Baijiu) production. Moreover, Schi. pombe promoted metabolic level of mevalonate pathway (high expressions of gene ACCAT1, HMGCS1, and HMGCR1) to degrade a high concentration of acetic acid. Meanwhile, Schi. pombe also improved the concentration of mevalonic acid that is the precursor of terpenes to enhance the taste and quality of Baijiu. Overall, the synchronicity of reduction and generation in Schi. pombe advances the current knowledge to guide more suitable strategies for mechanism studies of non-Saccharomyces yeasts in fermented industries of alcoholic beverages.
Collapse
|
58
|
Jiang J, Liu Y, Li H, Yang Q, Wu Q, Chen S, Tang J, Xu Y. Modeling and Regulation of Higher Alcohol Production through the Combined Effects of the C/N Ratio and Microbial Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10694-10701. [PMID: 31476866 DOI: 10.1021/acs.jafc.9b04545] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Too large of a higher alcohol content has negative effects on the liquor taste and health. Revealing the key microbes and their key driving forces is essential to regulate the higher alcohol content in spontaneous liquor fermentation. Herein, we used high-throughput sequencing associated with a multivariate statistical algorithm to reveal the contributing microbes for higher alcohol production in Chinese light-aroma-type liquor and identified that Saccharomyces and Pichia were the main contributors. In addition, the C/N ratio and microbial interaction were found to significantly affect the production of higher alcohols. Herein, we used response surface methodology to establish a predictive model for higher alcohol production with the regulating factors, and the content of total higher alcohols decreased significantly from 328.80 ± 24.83 to 114.88 ± 5.02 mg/L with the optimized levels of the regulators. This work would facilitate the control of flavor production via regulating microbial communities in food fermentation.
Collapse
Affiliation(s)
- Jian Jiang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Yuancai Liu
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute , Jing Brand Company, Limited , Daye , Hubei 435100 , China
| | - Huanhuan Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Qiang Yang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute , Jing Brand Company, Limited , Daye , Hubei 435100 , China
| | - Qun Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Shenxi Chen
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute , Jing Brand Company, Limited , Daye , Hubei 435100 , China
| | - Jie Tang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute , Jing Brand Company, Limited , Daye , Hubei 435100 , China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
59
|
Liu S, Laaksonen O, Yang W, Zhang B, Yang B. Pyranoanthocyanins in bilberry (Vaccinium myrtillus L.) wines fermented with Schizosaccharomyces pombe and their evolution during aging. Food Chem 2019; 305:125438. [PMID: 31494498 DOI: 10.1016/j.foodchem.2019.125438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Fifteen vitisin A-type pyranoanthocyanins (vAPs) were determined in bilberry wines fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe by HPLC-DAD and UPLC-DAD-ESI-MS/MS. The fermentation involving S. pombe enhanced the production of vAPs compared to the fermentation with pure S. cerevisiae. The formation of vAPs correlated significantly with the decrease in the content of monomeric anthocyanins and pyruvic acid during 12 months of aging. vAPs were more stable than their corresponding monomeric anthocyanins. Methylation in the B-ring and glycosylation with galactose and arabinose further improved the stability of vAPs. Aging for 12 months led to depletion of pyruvic acid and reduction of over 50% of monomeric anthocyanins. The content of vAPs increased by 26-54% during the first six months of aging, followed by a 2.2-10.2% reduction over the following six months. More residual pyruvic acid in S. pombe wines after fermentation consequently enhanced the generation of vAPs during aging.
Collapse
Affiliation(s)
- Shuxun Liu
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Bolin Zhang
- Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
60
|
Abstract
In the past, some microbiological studies have considered most non-Saccharomyces species to be undesirable spoilage microorganisms. For several decades, that belief made the Saccharomyces genus the only option considered by winemakers for achieving the best possible wine quality. Nevertheless, in recent decades, some strains of non-Saccharomyces species have been proven to improve the quality of wine. Non-Saccharomyces species can positively influence quality parameters such as aroma, acidity, color, and food safety. These quality improvements allow winemakers to produce innovative and differentiated wines. For that reason, the yeast strains Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Schizosaccharomyces pombe, and Pichia kluyveri are now available on the market. Other interesting species, such as Starmerella bacillaris, Meyerozyma guilliermondii, Hanseniospora spp., and others, will probably be available in the near future.
Collapse
|
61
|
Ruta LL, Farcasanu IC. Anthocyanins and Anthocyanin-Derived Products in Yeast-Fermented Beverages. Antioxidants (Basel) 2019; 8:E182. [PMID: 31216780 PMCID: PMC6617349 DOI: 10.3390/antiox8060182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023] Open
Abstract
The beverages obtained by yeast fermentation from anthocyanin-rich natural sources (grapes, berries, brown rice, etc.) retain part of the initial pigments in the maturated drink. During the fermentation and aging processes anthocyanins undergo various chemical transformations, which include reactions with glycolytic products (especially pyruvate and acetaldehyde) or with other compounds present in the complex fermentation milieu (such as vinylphenols obtained from cinnamic acids by means of a yeast decarboxylase) yielding pigments which can be more stable than the initial anthocyanins. Overall, these compounds contribute to the organoleptic traits of the mature product, but also to the overall chemical composition which make the yeast fermented beverages important sources of dietary antioxidants. In this review, we focused on the studies regarding the changes underwent by anthocyanins during yeast-mediated fermentation, on the approaches taken to enrich the fermented beverages in anthocyanins and their derived products, and on the interrelations between yeast and anthocyanin which were of relevance for obtaining a high-quality product containing optimum amounts of anthocyanin and anthocyanin-derived products.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| |
Collapse
|
62
|
Liu S, Laaksonen O, Yang B. Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiol 2019; 80:25-39. [DOI: 10.1016/j.fm.2018.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 01/25/2023]
|
63
|
Liu S, Li S, Lin G, Markkinen N, Yang H, Zhu B, Zhang B. Anthocyanin copigmentation and color attributes of bog bilberry syrup wine during bottle aging: Effect of tannic acid and gallic acid extracted from Chinese gallnut. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shuxun Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
- Food Chemistry and Food Development, Department of Biochemistry University of Turku Turku Finland
| | - Siyu Li
- Institute for Horticultural Plants, College of Horticulture China Agricultural University Beijing China
| | - Guo Lin
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Niko Markkinen
- Food Chemistry and Food Development, Department of Biochemistry University of Turku Turku Finland
| | - Hangyu Yang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
64
|
The impacts of Schizosaccharomyces on winemaking. Appl Microbiol Biotechnol 2019; 103:4291-4312. [PMID: 31004207 DOI: 10.1007/s00253-019-09827-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023]
Abstract
In the past century, yeasts from the genus Saccharomyces represented the only option in fermentation industries, such as winemaking, to produce wine, beer, and other fermented products. However, other genera are currently emerging to solve challenges in modern enology. Schizosaccharomyces pombe is showing promising results in solving specific challenges in northern, cool viticulture regions with highly acidic wines by deacidifying these wines through its malic acid metabolism. In addition, this microorganism is considered beneficial in warm growing regions with challenges such as the control of wine food safety problems such as the presence of biogenic amines, ochratoxin A, or ethyl carbamate. Indeed, the genus Schizosaccharomyces positively influences other important wine quality parameters, such as color and polysaccharide content. However, the main challenge of using this genus remains the selection of proper strains that alleviate problems such as the production of high acetate concentrations. Industries other than wine production such as ginger fermentation, apple wine, Kei-apple fermentation, plum wine, sparkling wine, and bilberry fermentation industries have also started to study Schizosaccharomyces species as an alternative tool for solving specific related problems. The review discusses the influence of Schizosaccharomyces on different fermentation quality parameters and its main applications in different industries.
Collapse
|
65
|
Huang ZR, Hong JL, Xu JX, Li L, Guo WL, Pan YY, Chen SJ, Bai WD, Rao PF, Ni L, Zhao LN, Liu B, Lv XC. Exploring core functional microbiota responsible for the production of volatile flavour during the traditional brewing of Wuyi Hong Qu glutinous rice wine. Food Microbiol 2018; 76:487-496. [DOI: 10.1016/j.fm.2018.07.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023]
|