51
|
Du YN, Xue S, Yan JN, Jiang XY, Wu HT. Gelation and microstructural properties of ternary composite gel of scallop (Patinopecten yessoensis) protein hydrolysates/κ-carrageenan/xanthan gum. J Food Sci 2021; 87:302-311. [PMID: 34919279 DOI: 10.1111/1750-3841.15987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the properties of ternary composite gel of scallop (Patinopecten yessoensis) protein hydrolysates (SMGHs)/κ-carrageenan (KC)/xanthan gum (XG). The rheological properties, moisture-distribution, molecular structure, and microstructure of SMGNs/KC/XG gels were analyzed. The results showed that the G' value, melting temperature, and water holding capacity of SMGHs/KC/XG were higher than those of SMGHs, SMGHs/KC, and SMGHs/XG. FTIR spectrum showed the generation of hydrogen bonds between SMGHs and KC/XG, and the carboxylic acid group of XG interacts with SMGHs. Moreover, the cryo-SEM results showed that SMGHs/KC/XG exhibited a tighter, smoother, and more aggregated microstructure than those of SMGHs, SMGHs/KC, and SMGHs/XG. These results indicate that the gel and microstructural properties of SMGHs are significantly improved by addition of KC and XG, and SMGHs/KC/XG has potential to be used as functional hydrogels for food, pharmaceutical, and biomedical applications. PRACTICAL APPLICATION: Scallop (Patinopecten yessoensis) male gonads are rich in protein and usually regarded as byproducts during adductor processing. Because of its gelation properties, scallop male gonads have potential to be used as functional hydrogels for food. The SMGHs/KC/XG ternary composite gel showed excellent gel properties, which would be potentially applied in delivery system in food and biological fields. Further study is undergoing to apply SMGHs/KC/XG to embed bioactive compounds, such as curcumin and β-carotene.
Collapse
Affiliation(s)
- Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Shan Xue
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Xin-Yu Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China.,National Engineering Research Center of Seafood, Dalian, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, PR China
| |
Collapse
|
52
|
The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
53
|
Cortez-Trejo M, Gaytán-Martínez M, Reyes-Vega M, Mendoza S. Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
54
|
Insight into the Effect of Ice Addition on the Gel Properties of Nemipterus virgatus Surimi Gel Combined with Water Migration. Foods 2021; 10:foods10081815. [PMID: 34441590 PMCID: PMC8392640 DOI: 10.3390/foods10081815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The effect of the amount of ice added (20–60%) on the gel properties and water migration of Nemipterus virgatus surimi gel obtained with two-stage heat treatment was studied. The gel strength and water-holding capability (WHC) of the surimi gel with 30% ice added were significantly higher than those of other treatment groups (p < 0.05). The addition of 30% ice was conducive to the increase of protein β-sheet proportion during heat treatment, exposing more reactive sulfhydryl groups. These promoted the combination of protein-protein through disulfide bonds and hydrophobic-hydrophobic interactions, forming an ordered three-dimensional gel network structure. Meanwhile, the increase in hydrogen bonds promoted the protein-water interaction. Low-field nuclear magnetic resonance analysis showed that more bound water was locked in the gel system, reducing the migration of immobile water to free water and finally showing better gel properties. When the amount of ice added was insufficient (20%), the gel structure lacked the support of immobile water, resulting in deterioration of gel strength. However, excessive addition of ice (>30%) was not conducive to the combination of protein-protein and protein-water, forming a large and rough gel structure, resulting in the migration of immobile water to free water and ultimately exhibited weak gel properties.
Collapse
|
55
|
Ren LK, Guo QQ, Yang Y, Liu XF, Guan HN, Chen FL, Bian X, Zhang XM, Zhang N. Structural characterization and functional properties of CNPP, a byproduct formed during CPP preparation. J Food Sci 2021; 86:1845-1860. [PMID: 33908034 DOI: 10.1111/1750-3841.15717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 03/06/2021] [Indexed: 11/29/2022]
Abstract
Casein nonphosphopeptide (CNPP), a byproduct formed during the preparation of casein phosphopeptide (CPP), is often discarded on a large scale. Although our previous studies have demonstrated the ameliorative effect of CNPP on muscle wasting disorders, its structure-function mechanism is still unclear. Therefore, considering the great influence of structural characteristics on function, this study aims to explain the potential mechanism by characterizing the physicochemical and functional properties of CNPP. The results of structural characterization indicated that CNPP was of low molecular weight and composed of the complete range of amino acids; it was particularly rich in leucine. Compared with casein, CNPP had a lower molecular size and total/free sulfhydryl content (reduced 2.44 and 2.02 µmol/g in CNPP, respectively). Additionally, Fourier transform infrared spectroscopic analysis revealed that enzymatic hydrolysis caused protein unfolding, and the content of β-turns and random coils reached 50.20% and 10.67%, respectively. Fluorescence-dependent detection of CNPP indicated a reduction of spectral intensity and the occurrence of a red shift. The changes in the structure of CNPP significantly affected its functional characteristics. CNPP has better solubility, foaming, and digestion properties than those of casein and whey protein. Specifically, the foam stability and emulsification properties decreased in the order of casein > CNPP > whey protein. The present study can provide a substantial basis for future application of CNPP as a functional ingredient against sarcopenia.
Collapse
Affiliation(s)
- Li-Kun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Qing-Qi Guo
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiao-Fei Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Hua-Nan Guan
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Feng-Lian Chen
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | | | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
56
|
Physicochemical, structural and gelation properties of arachin-basil seed gum composite gels: Effects of salt types and concentrations. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
57
|
Tang H, Tan L, Chen Y, Zhang J, Li H, Chen L. Effect of κ-carrageenan addition on protein structure and gel properties of salted duck egg white. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1389-1395. [PMID: 32835415 DOI: 10.1002/jsfa.10751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Salted duck egg white (SDEW) is a major by-product during salted egg yolk manufacturing. Due to the high salt concentration, SDEW has not been efficiently utilized. Moreover, functional properties of SDEW are altered by salt during pickling. To improve the functional properties, the effect of κ-carrageenan (κ-CAR) addition on the protein structure and gel properties of SDEW was investigated in this study. RESULTS The surface hydrophobicity and free sulfhydryl content of SDEW protein increased, while total sulfhydryl content decreased significantly with the addition of κ-CAR (0.02-0.10%). Fourier-transform infrared spectroscopy analysis revealed that the relative content of α-helix and β-turn decreased, β-sheet and random coil increased, indicating the variation tendency of protein structure from order to disorder. As κ-CAR addition increased, the texture profiles including hardness, gumminess, chewiness, springiness, cohesiveness and resilience of SDEW gel were all improved. Water holding capacity increased significantly by 32.33% in the presence of 0.10% κ-CAR addition. The scanning electron microscopy indicated that the microstructure of SDEW/κ-CAR mixed gel was more smooth and compact. CONCLUSION The results suggested that adding κ-CAR can be an effective method to improve gel quality of SDEW. This study is expected to provide theoretical basis for modification of SDEW protein, as well as preparation of food ingredients with better gel properties from SDEW. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Lulan Tan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Yifan Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Huanhuan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| |
Collapse
|
58
|
Cao C, Feng Y, Kong B, Xia X, Liu M, Chen J, Zhang F, Liu Q. Textural and gel properties of frankfurters as influenced by various κ-carrageenan incorporation methods. Meat Sci 2021; 176:108483. [PMID: 33676306 DOI: 10.1016/j.meatsci.2021.108483] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 11/26/2022]
Abstract
The influence of different addition forms of κ-carrageenan, including powder, pre-suspended in water, and pre-suspended in brine, on the textural and gel properties of frankfurters were investigated. Compared with the control group, each addition form of κ-carrageenan led to a lower cooking loss, as well as higher emulsion stability with more trapped water within frankfurters (P < 0.05). Moreover, κ-carrageenan powder or κ-carrageenan water suspension addition could render higher hardness, adhesiveness, springiness, chewiness, fracturability, and resilience of frankfurters than control group (P < 0.05), which was verified by dynamic rheology analysis. However, κ-carrageenan brine suspension addition had negative effects on the above characteristics. Microstructural images indicated that κ-carrageenan could help form finer and denser protein matrices. However, the interaction modes between the meat protein matrix and each addition form of κ-carrageenan were distinct. Additionally, the addition of κ-carrageenan water suspension had the best effect on the improvement of the textural and gel properties of frankfurters with an enhanced overall acceptability.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yangyang Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Meiyue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaxin Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
59
|
Li Y, Zeng QH, Liu G, Peng Z, Wang Y, Zhu Y, Liu H, Zhao Y, Jing Wang J. Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins. ULTRASONICS SONOCHEMISTRY 2021; 71:105364. [PMID: 33125962 PMCID: PMC7786555 DOI: 10.1016/j.ultsonch.2020.105364] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/05/2020] [Accepted: 10/02/2020] [Indexed: 05/24/2023]
Abstract
A novel protein extraction method of ultrasound-assisted basic electrolyzed water (BEW) was proposed, and its effects on the structural and functional properties of Antarctic krill proteins were investigated. Results showed that BEW reduced 30.9% (w/w) NaOH consumption for the extraction of krill proteins, and its negative redox potential (-800 ~ -900 mV) protected the active groups (carbonyl, free sulfhydryl, etc.) of the proteins from oxidation compared to deionized water (DW). Moreover, the ultrasound-assisted BEW increased the extraction yield (9.4%), improved the solubility (8.5%), reduced the particle size (57 nm), favored the transition of α-helix and β-turn to β-sheet, promoted the surface hydrophobicity and disulfide bonds formation of krill proteins when compared to BEW without ultrasound. These changes contributed to the enhanced foam capacity, foam stability and emulsifying capacity of the krill proteins. Notably, all the physicochemical, structural and functional properties of the krill proteins were comparable to those extracted by the traditional ultrasound-assisted DW. This study suggests that the ultrasound-assisted BEW can be a potential candidate to extract proteins, especially offering an alternative way to produce marine proteins with high nutritional quality.
Collapse
Affiliation(s)
- Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue H9X 3 V9, Canada
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China.
| |
Collapse
|
60
|
The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106290] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
61
|
Dong Y, Huang Z, Niu L, Xiao J. Influence of
kappa
‐carrageenan on the gel properties of
auricularia auricular‐judae
during freeze–thaw cycles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yue Dong
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang330045China
| | - Zhanwang Huang
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang330045China
| | - Liya Niu
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang330045China
| | - Jianhui Xiao
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang330045China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding Ministry of Education Jiangxi Agricultural University Nanchang330045China
| |
Collapse
|
62
|
Zheng H, Shiming L, Gaozhan X, Dingding R, Wenhong C, Chaohua Z, Jianjun Y. Effect of heat pretreatment before isoelectric solubilisation/precipitation on the characteristics of Pacific oyster (
Crassostrea hongkongensis
) and Antarctic krill (
Euphausia superba
) protein isolates. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huina Zheng
- College of Food Science and Technology Guangdong Ocean University Zhanjiang524088China
- Shenzhen Institute of Guangdong Ocean University Shenzhen518116China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety Zhanjiang524088China
| | - Liang Shiming
- College of Food Science and Technology Guangdong Ocean University Zhanjiang524088China
| | - Xue Gaozhan
- College of Food Science and Technology Guangdong Ocean University Zhanjiang524088China
| | - Ren Dingding
- College of Food Science and Technology Guangdong Ocean University Zhanjiang524088China
| | - Cao Wenhong
- College of Food Science and Technology Guangdong Ocean University Zhanjiang524088China
- Shenzhen Institute of Guangdong Ocean University Shenzhen518116China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety Zhanjiang524088China
| | - Zhang Chaohua
- College of Food Science and Technology Guangdong Ocean University Zhanjiang524088China
- Shenzhen Institute of Guangdong Ocean University Shenzhen518116China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety Zhanjiang524088China
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University) Fujian Province University Quanzhou362000China
| | - Yuan Jianjun
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University) Fujian Province University Quanzhou362000China
- College of Oceanology and Food Science Quanzhou Normal University Quanzhou362000China
| |
Collapse
|
63
|
Zhang Q, Gu L, Su Y, Chang C, Yang Y, Li J. Development of soy protein isolate/κ-carrageenan composite hydrogels as a delivery system for hydrophilic compounds: Monascus yellow. Int J Biol Macromol 2021; 172:281-288. [PMID: 33453255 DOI: 10.1016/j.ijbiomac.2021.01.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to develop soy protein isolate (SPI) and κ-carrageenan (KC) composite hydrogels as a delivery system for hydrophilic compounds. The pigment of monascus yellow was used as a model. A systematic study was performed to characterize the rheological, textural, microstructural properties and in vitro digestion release profile of monascus yellow of the composite gels. The results of power law modeling, electrophoresis patterns and fourier transform infrared spectroscopy (FTIR) confirmed that non-covalent interactions were involved in the formation of SPI/KC composite hydrogels. Compared to pure κ-carrageenan hydrogels, the incorporation of SPI could promote the formation of tougher, more uniform and compact composite gels with sustained-release property. In addition, the release behaviors of monascus yellow entrapped in the hydrogel network can be well described by the Ritger-Peppas mathematical model. Overall, our study provided a promising strategy to enhance the sustained release performance of hydrogels in digestive conditions.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
64
|
The effects of basil seed gum on the physicochemical and structural properties of arachin gel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Hu S, Wu J, Zhu B, Du M, Wu C, Yu C, Song L, Xu X. Low oil emulsion gel stabilized by defatted Antarctic krill (Euphausia superba) protein using high-intensity ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 70:105294. [PMID: 32759019 PMCID: PMC7786637 DOI: 10.1016/j.ultsonch.2020.105294] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 05/05/2023]
Abstract
Emulsion gels with low oil contents have been continuously developed in recent decades. In this study, the use of high-intensity ultrasound for the preparation of low oil emulsion gel (oil fraction of 0.25) was investigated. Specifically, defatted Antarctic krill protein (dAKP) was used to stabilize the interface of soybean oil and water. Then, the microstructure and the stabilization mechanism of the formed emulsion gel were evaluated by cryo-SEM, CLSM, zeta potential, rheological measurements, and FTIR. Besides, the particle diameter was measured to be around 5 μm. The results of CLSM indicated that the emulsion gel was the oil-in-water type. The emulsion gel exhibited gel-like viscoelastic behavior even at a low concentration of dAKP due to the formation of a rigid particle network while the rheological behavior of the emulsion gel was significantly affected by the concentration of dAKP. The stabilization of the emulsion gel can be maintained by space steric hindrance and hydrophobic interactions between particles in the emulsion gel system.
Collapse
Affiliation(s)
- Sijie Hu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jianhai Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Cuiping Yu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
66
|
Li Y, Zeng QH, Liu G, Chen X, Zhu Y, Liu H, Zhao Y, Wang JJ. Food-grade emulsions stabilized by marine Antarctic krill (Euphausia superba) proteins with long-term physico-chemical stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
Chen J, Deng T, Wang C, Mi H, Yi S, Li X, Li J. Effect of hydrocolloids on gel properties and protein secondary structure of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2252-2260. [PMID: 31917477 DOI: 10.1002/jsfa.10254] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hydrocolloids are the most commonly used additive in the processing of surimi products. However, the effect of hydrocolloids on surimi protein conformation has not been reported, and the level of hydrocolloids may be a key factor influencing the quality of surimi. Therefore, this study investigated the effect of curdlan, xanthan gum, κ-carrageenan, and gelatin at various levels on gel properties and protein conformation of surimi from silver carp. RESULTS Addition of curdlan, κ-carrageenan, or gelatin at lower level could significantly promote gel strength, textural profiles, and water holding capacity (WHC) of the surimi gels. However, gel strength and WHC gradually decreased with increasing amount of xanthan gum added. The addition of curdlan or κ-carrageenan remarkably increased the whiteness of surimi gel, but the whiteness decreased when the concentration of κ-carrageenan reached 5 g kg-1 . Along with the increase of curdlan, κ-carrageenan, or gelatin concentration, the index of hydrophobic interaction and hydrogen bonds first increased and then decreased, whereas index of ionic bonds first decreased and then increased. According to Raman spectroscopy data, a small content of curdlan or κ-carrageenan promoted the conformational transition of surimi protein from α-helix to β-sheet, leading to the changes in gel properties of surimi gels. Scanning electron microscopy photographs showed surimi gels added with 4 g kg-1 curdlan or 2 g kg-1 κ-carrageenan had a finer and denser network structure. CONCLUSION Curdlan or κ-carrageenan at an appropriate concentration is a potential modifier to effectively improve the quality of surimi products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingxin Chen
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R & D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Tingyue Deng
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R & D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Cong Wang
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R & D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Hongbo Mi
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R & D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R & D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R & D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R & D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| |
Collapse
|
68
|
Xue G, Ren D, Zhou C, Zheng H, Cao W, Lin H, Qin X, Zhang C. Comparative study on the functional properties of the pearl oyster ( Pinctada martensii) protein isolates and its electrostatic complexes with three hydrophilic polysaccharides. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1797781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gaozhan Xue
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Dingding Ren
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, P.R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, P.R. China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, P.R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, P.R. China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, P.R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, P.R. China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, P.R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, P.R. China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, P.R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, P.R. China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, P.R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, P.R. China
| |
Collapse
|
69
|
Ye T, Dai H, Lin L, Lu J. Employment of κ‐carrageenan and high pressure processing for quality improvement of reduced NaCl surimi gels. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tao Ye
- College of Bioengineering Huainan Normal University Huainan China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes Huainan China
| | - Huiming Dai
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Lin Lin
- School of Food and Biological Engineering Hefei University of Technology Hefei China
- Key Laboratory for Agricultural Products Processing of Anhui Province Hefei University of Technology Hefei China
- Engineering Research Center of Bio‐process Ministry of Education, Hefei University of Technology Hefei China
| | - Jianfeng Lu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
- Key Laboratory for Agricultural Products Processing of Anhui Province Hefei University of Technology Hefei China
- Engineering Research Center of Bio‐process Ministry of Education, Hefei University of Technology Hefei China
| |
Collapse
|