51
|
Wang L, Wang M, Zhou Y, Wu Y, Ouyang J. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chem 2022; 377:131990. [PMID: 34999449 DOI: 10.1016/j.foodchem.2021.131990] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023]
Abstract
The effects of ultrasound and microwave on the physicochemical properties of normal maize and potato starches were compared. The cavitation effect of ultrasound loosened the internal space and destroyed the structure of starch granules, increased the damaged starch content, which was consistent with the decrease in relative crystallinity and the number and brightness of Maltese crosses, and the increase in D(0.5) and D(4,3) values. Microwave vibrated the molecules inside the granules and generated heat to destroy the structure of starch. The content of damaged starch was significantly lower in microwave-treated starch compared with ultrasound-treated starch. Microwave treatment promoted the formation of amylose-lipid complex, with the larger peak area at 20°(2θ) than that of the ultrasound-treated starch. The type of starch and the treatment sequence showed a significant effect. The results might help understand the mechanism of ultrasound and microwave treatments influencing the structural properties of starches.
Collapse
Affiliation(s)
- Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Meng Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China
| | - Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
52
|
Wang W, Hu A, Li J, Liu G, Wang M, Zheng J. Comparison of physicochemical properties and digestibility of sweet potato starch after two modifications of microwave alone and microwave-assisted L-malic acid. Int J Biol Macromol 2022; 210:614-621. [PMID: 35513097 DOI: 10.1016/j.ijbiomac.2022.04.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
The effects of microwave alone (MA) and microwave-assisted L-malic acid (MLA) on the physicochemical properties, structural and digestibility of sweet potato starch were investigated. The results showed that the swelling power, lightness (L⁎) and whiteness index (WI), gelatinization enthalpy of starch decreased by MA and MLA treatment. The starch treated by MLA showed a new characteristic absorption peak at near 1735 cm-1 in the measurement of FT-IR, while the starch treated with MA showed no new characteristic peak. The relative crystallinity of starch modified by MSE and MA decreased, but it still retained A-type crystal structure. Scanning electron microscopy showed that the surface destruction of MSE-modified starch was greater than that of starch modified by MA. MLA increased the content of resistant starch (RS), while MA reduced the content of resistant starch (RS). The relative crystallinity and gelatinization enthalpy of continuous 60 s treatment were lower than those of discontinuous 60 s treatment. These results indicated that MLA had a greater effect on the physicochemical properties, structural and digestibility of starch than MA. Starch modified by MLA can be added to foods as a low-carbohydrate ingredient, and the starch treated by MA is suitable for foods with low swelling, such as noodles.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Street , Economic Development Zone, Binhai New Area, Tianjin, 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Street , Economic Development Zone, Binhai New Area, Tianjin, 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Street , Economic Development Zone, Binhai New Area, Tianjin, 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Guangxin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Street , Economic Development Zone, Binhai New Area, Tianjin, 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Mengting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Street , Economic Development Zone, Binhai New Area, Tianjin, 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Street , Economic Development Zone, Binhai New Area, Tianjin, 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
53
|
Rearranged supramolecular structure of resistant starch with polymorphic microcrystals prepared in high-solid enzymatic system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
54
|
Zhang M, Chen G, Li M, Niu H, Chen Y, Jiang P, Li S. Effects of microwave on microscopic, hydration and gelatinization properties of oat and its application on noodle‐processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingyue Zhang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Guiyun Chen
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Mingyuan Li
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Haili Niu
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Ye Chen
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Peiyun Jiang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Shuhong Li
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| |
Collapse
|
55
|
Xiong Q, Qiao D, Niu M, Xu Y, Jia C, Zhao S, Li N, Zhang B. Microwave Cooking Enriches the Nanoscale and Short/Long-Range Orders of the Resulting indica Rice Starch Undergoing Storage. Foods 2022; 11:foods11040501. [PMID: 35205978 PMCID: PMC8870924 DOI: 10.3390/foods11040501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The chain reorganization of cooked starch during storage plays an important role in the performance of starchy products such as rice foods. Here, different analytical techniques (such as small-angle X-ray scattering) were used to reveal how microwave cooking influences the chain assembly of cooked indica rice starch undergoing storage for 0, 24, or 48 h. While stored, more short-range double helices, long-range crystallites, and nanoscale orders emerged for the microwave-cooked starch than for its conventionally cooked counterpart. For instance, after storage for 24 h, the microwave-cooked starch contained 46.8% of double helices, while its conventionally cooked counterpart possessed 34.3% of double helices. This could be related to the fact that the microwave field caused high-frequency movements of polar groups such as hydroxyls, which strengthened the interactions between starch chains and water molecules and eventually their assembly into double helices, crystallites, and nanoscale orders. This work provides further insights into the chain reassembly of microwave-cooked starch undergoing storage, which is closely related to the quality attributes of starch-based products.
Collapse
Affiliation(s)
- Qing Xiong
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Meng Niu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Yan Xu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Caihua Jia
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Nannan Li
- Nanjing Institute for Comprehnsive Utilization of Wild Plants, Nanjing, 211111, China
- Correspondence: (N.L.); (B.Z.)
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
- Correspondence: (N.L.); (B.Z.)
| |
Collapse
|
56
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
57
|
Zeng X, Zheng B, Xiao G, Chen L. Synergistic effect of extrusion and polyphenol molecular interaction on the short/long-term retrogradation properties of chestnut starch. Carbohydr Polym 2022; 276:118731. [PMID: 34823767 DOI: 10.1016/j.carbpol.2021.118731] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 01/06/2023]
Abstract
The retrogradation properties of starch are closely related to the processing quality of starch-based foods. In this study, the synergistic effects of extrusion and the presence of polyphenols on the water distribution, rheological properties and short-term (1 day)/long-term (21 day) retrogradation of chestnut starch paste were investigated. Post extrusion complexation with catechins (CC)/proanthocyanidins (PC), the short- and long-term retrogradation were both inhibited and the anti-retrogradation rates (AR) during 1 and 21 days were as high as 100% and 44.17-69.30%, respectively. Owing to the destruction of starch chains by extrusion and interaction between starch and polyphenol molecules, the approach, entanglement and aggregation tendencies of starch molecules were all inhibited, which decreased the relative crystallinity (RC), flow resistance and storage modulus of starch paste and also increased the water-holding capacity. The starch retrogradation was thus suppressed. These results are beneficial for the development of starch-based products with high quality and lower retrogradation rate.
Collapse
Affiliation(s)
- Xixi Zeng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China..
| | - Gengsheng Xiao
- College of Food Science and Technology, Zhongkai University of Agriculture Engineering, Guangzhou 510225, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China..
| |
Collapse
|
58
|
The role of drying methods in determining the in vitro digestibility of starch in whole chestnut flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
59
|
Peng Z, Cheng L, Meng K, Shen Y, Wu D, Shu X. Retaining a large amount of resistant starch in cooked potato through microwave heating after freeze-drying. Curr Res Food Sci 2022; 5:1660-1667. [PMID: 36193039 PMCID: PMC9526131 DOI: 10.1016/j.crfs.2022.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Resistant starch (RS) is beneficial for humans, especially for the diabetes. Raw potato had a great deal of RS, while most of which become digestible after gelatinization. Thus, few RS will be retained in potatoes after regular cooking. To preserve RS in cooked potatoes as much as possible, microwave heating before (MFD) and after freeze-drying (FDM) were conducted with three different potatoes. After MFD, the RS content in potatoes was lower than 7% and the RDS content was higher than 45% for three potatoes. However, RS in potatoes treated with FDM was still as high as 40%, similar to that in the raw potatoes. Meantime, FDM caused less browning, produced a certain level of pyrazines, benzeneacetaldehyde and other flavor compounds, endowing cooked potatoes special baked flavor. Freeze-drying before microwave heating is a valuable way to reserve RS in cooked potatoes, which could also be used to reserve high RS content in crisp, chips, and other processed potatoes. Freeze-drying before microwave heating cause subtle effects on starch properties. Cooked potatoes by microwave heating after freeze-drying reserve rich RS. Microwave heating after freeze-drying caused less browning. Cooked potatoes by microwave heating after freeze-drying had special baking flavor.
Collapse
|
60
|
Zailani MA, Kamilah H, Husaini A, Awang Seruji AZR, Sarbini SR. Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
61
|
He Y, Ye F, Li S, Wang D, Chen J, Zhao G. Effect of Sand-Frying-Triggered Puffing on the Multi-Scale Structure and Physicochemical Properties of Cassava Starch in Dry Gel. Biomolecules 2021; 11:biom11121872. [PMID: 34944515 PMCID: PMC8699278 DOI: 10.3390/biom11121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
This study revealed the underlying mechanisms involved in the puffing process of dried cassava starch gel by exploring the development of the puffed structure of gel upon sand-frying, chiefly focused on the changes in the multi-scale structure and the physicochemical properties of starch. The results suggested that the sand-frying-induced puffing proceeded very fast, completed in about twenty seconds, which could be described as a two-phase pattern including the warming up (0~6 s) and puffing (7~18 s) stages. In the first stage, no significant changes occurred to the structure or appearance of the starch gel. In the second stage, the cells in the gel network structure were expanded until burst, which brought about a decrease in moisture content, bulk density, and hardness, as well as the increase in porosity and crispness when the surface temperature of gel reached glass transition temperature of 125.28 °C. Upon sand-frying puffing, the crystalline melting and molecular degradation of starch happened simultaneously, of which the latter mainly occurred in the first stage. Along with the increase of puffing time, the thermal stability, peak viscosity, and final viscosity of starch gradually decreased, while the water solubility index increased. Knowing the underlying mechanisms of this process might help manufacturers produce a better quality of starch-based puffed products.
Collapse
Affiliation(s)
- Yonglin He
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Sheng Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.H.); (F.Y.); (S.L.); (D.W.); (J.C.)
- Chongqing Engineering Research Center for Sweet Potato, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-2118
| |
Collapse
|
62
|
Long-term retrogradation behavior of lotus seed starch-chlorogenic acid mixtures after microwave treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
63
|
Huong NTM, Hoa PN, Van Hung P. Effects of microwave treatments and retrogradation on molecular crystalline structure and in vitro digestibility of debranched mung-bean starches. Int J Biol Macromol 2021; 190:904-910. [PMID: 34534585 DOI: 10.1016/j.ijbiomac.2021.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
The objective of this study was to investigate morphology, molecular crystalline structure, and digestibility of debranched mung bean starches with or without microwave treatment and retrogradation at different temperature. The mung bean starch was firstly debranched with pullulanase, and then the debranched starch containing 20% moisture content was treated by microwave irradiation for 3 min with or without further retrograded at +25, +4, or -18 °C for 24 h. All treated starches exhibited the B + V-type crystalline polymorph as determined by the XRD and the 13CNMR. The FT-IR results showed that the debranched starches had lower degree of order but higher degree of double helix than those of the native starch. The microwave treatment or further recrystallization of the debranched starch for more 24 h significantly improved crystalline structure of starch granules with higher degree of relative crystallinity, degree of order, and degree of double helices. The resistant starch content of the treated starch was in a range of 39.7-52.8%, significantly higher than that of the native starch (15.6%). As a result, the microwave-assisted debranched starch with further crystallization for 24 h was found to have highly ordered structure of granules, which highly resisted to the enzyme digestion.
Collapse
Affiliation(s)
- Nguyen Thi Mai Huong
- Department of Food Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Institute of Biotechnology and Food Technology, Industrial University of HoChiMinh City, 12 Nguyen Van Bao, Ward 4, Go Vap District, HoChiMinh City, Viet Nam; Vietnam National University in Ho Chi Minh City, Viet Nam
| | - Phan Ngoc Hoa
- Department of Food Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University in Ho Chi Minh City, Viet Nam
| | - Pham Van Hung
- Department of Food Technology, International University, Quarter 6, LinhTrung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam; Vietnam National University in Ho Chi Minh City, Viet Nam.
| |
Collapse
|
64
|
Chen X, Liu Y, Xu Z, Zhang C, Liu X, Sui Z, Corke H. Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Ouyang Q, Wang X, Xiao Y, Luo F, Lin Q, Ding Y. Structural changes of A-, B- and C-type starches of corn, potato and pea as influenced by sonication temperature and their relationships with digestibility. Food Chem 2021; 358:129858. [PMID: 33933983 DOI: 10.1016/j.foodchem.2021.129858] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
The effect of sonication temperature on the structures and digestion behaviour of corn starch (CS, A-type), potato starch (PtS, B-type), and pea starch (PS, C-type) was investigated. For CS, sonication temperature resulted in a rough surface, decreased apparent amylose content, gelatinization enthalpy and gelatinization degree, increased short-range orders, long-range orders, retrogradation degree and resistant starch content. For PtS, sonication temperature led to a coarser surface with scratches, increased apparent amylose content and gelatinization degree, decreased short-range orders, long-range orders, gelatinization enthalpy, retrogradation degree, and resistant starch content. For PS, sonication temperature showed partial disintegration on surface, increased gelatinization degree, decreased apparent amylose content, short-range orders, long-range orders, gelatinization enthalpy, retrogradation degree and resistant starch content. This study suggested that starch digestion features could be controlled by the crystalline pattern of starch used and the extent of sonication temperature, and thus were of value for rational control of starch digestion features.
Collapse
Affiliation(s)
- Qunfu Ouyang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
66
|
He J, Zeng L, Gong J, He Y, Liu X, Zhang L, Xu N, Wang Q. Effects of two contrasting dietary polysaccharides and tannic acid on the digestive and physicochemical properties of wheat starch. Food Sci Nutr 2021; 9:5800-5808. [PMID: 34646547 PMCID: PMC8498076 DOI: 10.1002/fsn3.2559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, konjac glucomannan, κ-carrageenan, and tannic acid were selected to study the effects of different combinations on the in vitro digestibility and physicochemical properties of wheat starch. Results showed that the addition of konjac glucomannan, κ-carrageenan, and tannic acid could decrease the digestion of starch and increase the content of resistant starch. Besides, the two polysaccharides weakened the extent of tannic acid on starch digestion. Moreover, although the two polysaccharides had different effects on the in vitro digestion of starch, they had no significant increase in the content of resistant starch. DSC and XRD results demonstrated that the polysaccharides and tannic acid showed synergistic effects on the rebuilding of starch microstructure. FTIR results further manifested that κ-carrageenan and konjac glucomannan could significantly increase the strength of hydrogen bonds in starch. At the same time, the addition of tannic acid would weaken the molecular interaction between polysaccharides and starch. SEM and CLSM results showed that tannic acid added to the polysaccharide-starch mixture not only interacted with starch but also influenced the structure of polysaccharide gel.
Collapse
Affiliation(s)
- Juncheng He
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Lirong Zeng
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Junan Gong
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Yalun He
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xiong Liu
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Ling Zhang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Na Xu
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Qiong Wang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
67
|
Effect of Continuous and Discontinuous Microwave-Assisted Heating on Starch-Derived Dietary Fiber Production. Molecules 2021; 26:molecules26185619. [PMID: 34577093 PMCID: PMC8471463 DOI: 10.3390/molecules26185619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Dietary fiber can be obtained by dextrinization, which occurs while heating starch in the presence of acids. During dextrinization, depolymerization, transglycosylation, and repolymerization occur, leading to structural changes responsible for increasing resistance to starch enzymatic digestion. The conventional dextrinization time can be decreased by using microwave-assisted heating. The main objective of this study was to obtain dietary fiber from acidified potato starch using continuous and discontinuous microwave-assisted heating and to investigate the structure and physicochemical properties of the resulting dextrins. Dextrins were characterized by water solubility, dextrose equivalent, and color parameters (L* a* b*). Total dietary fiber content was measured according to the AOAC 2009.01 method. Structural and morphological changes were determined by means of SEM, XRD, DSC, and GC-MS analyses. Microwave-assisted dextrinization of potato starch led to light yellow to brownish products with increased solubility in water and diminished crystallinity and gelatinization enthalpy. Dextrinization products contained glycosidic linkages and branched residues not present in native starch, indicative of its conversion into dietary fiber. Thus, microwave-assisted heating can induce structural changes in potato starch, originating products with a high level of dietary fiber content.
Collapse
|
68
|
Xu J, Li X, Chen J, Dai T, Liu C, Li T. Effect of polymeric proanthocyanidin on the physicochemical and in vitro digestive properties of different starches. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
69
|
Hu N, Li L. Optimization of chestnut starch acetate synthesis by response surface methodology and its effect on dough properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Hu
- Asset and Laboratory Management Office Hebei University of Science and Technology Shijiazhuang PR China
| | - Luning Li
- Assets Equipment Management Office Shijiazhuang University Shijiazhuang PR China
| |
Collapse
|
70
|
Zhang K, Zhao D, Guo D, Tong X, Zhang Y, Wang L. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. Int J Biol Macromol 2021; 183:481-489. [PMID: 33933544 DOI: 10.1016/j.ijbiomac.2021.04.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
In this study, the effect of microwave-ultrasound or/and toughening treatment on the physicochemical, structural properties, and in vitro digestibility of A- and B-type granules isolated from wheat starch were investigated. From the SEM, microwave-ultrasound and toughening treatment (MU-T) led to the appearance of irregular and disrupted structure significantly and an increment in the resistant starch content of A- and B-type granule. Furthermore, the MU-T starch possessed the lowest swelling power, light transmittance, and gelatinization temperature range (Tc -To) and the highest ΔH. After MU-T, the relative crystallinity (RC) of X-ray pattern, Fourier transform infrared ratio of 1047/1022 cm-1, and the content of double helix and single helix of 13C CP/MAS NMR had increased significantly. In particular, there was a difference in the content of RS and SDS between A-starch granules and B-starch granules as well as their changes after modification (from 69.305% to 82.93 for A-starch and form 74.97% to 88.17 for B-starch, respectively), which was a similar trend with RC and helix content. This study indicated that, for both A-type granule and B-type granule starches, microwave-ultrasound and toughening treated samples had unique properties compared to singly modified starches.
Collapse
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Di Zhao
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China.
| | - Dongxu Guo
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiaofeng Tong
- Henan Agricultural University, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Yun Zhang
- Henan University of Technology, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Li Wang
- School of Food Science, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
71
|
Guo C, Zhang M, Devahastin S. Improvement of 3D printability of buckwheat starch-pectin system via synergistic Ca2+-microwave pretreatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
72
|
Mao H, Li J, Chen Z, Yan S, Li H, Wen Y, Wang J. Molecular structure of different prepared pyrodextrins and the inhibitory effects on starch retrogradation. Food Res Int 2021; 143:110305. [PMID: 33992325 DOI: 10.1016/j.foodres.2021.110305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/13/2021] [Accepted: 03/07/2021] [Indexed: 11/25/2022]
Abstract
Pyrodextrins with different molecular size were prepared by dry heating native corn starch with and without hydrochloric acid (HCl) at 180 °C for 0.5, 3, and 5 h. Those with HCl treatment displayed much smaller molecular size, narrower size distribution, and higher proportion of the chains with the degree of polymerization (DP) ~24-400 than the counterparts without HCl treatment. Pasting and rheological tests showed that the addition of pyrodextrins with HCl treatment displayed lower overall and setback viscosity, and reduced gel development and gel strength in comparison of those without HCl treatment. Differential scanning calorimetry (DSC) and wide-range X-ray (WXRD) data suggested that the pyrodextrin sample prepared by heating native starch with HCl at 180 °C for 5 h (A5) displayed the most effective inhibition on starch long-term retrogradation. This study could supply a pathway by applying pyrodextrins to both increase nutrition value and retard starch retrogradation for bakery and beverage industry.
Collapse
Affiliation(s)
- Huijia Mao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Jie Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Zhijun Chen
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Shu Yan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
73
|
Oyeyinka SA, Akintayo OA, Adebo OA, Kayitesi E, Njobeh PB. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int J Biol Macromol 2021; 176:87-95. [PMID: 33577814 DOI: 10.1016/j.ijbiomac.2021.02.066] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Native starches are unsuitable for most industrial applications. Therefore, they are modified to improve their application in the industry. Starch may be modified using enzymatic, genetic, chemical, and physical methods. Due to the demand for safe foods by consumers, researchers are focusing on the use of cheap, safe and environmentally friendly methods such as the use of physical means for starch modification. Microwave heating of starch is a promising physical method for starch modification due to its advantages such as homogeneous operation throughout the whole sample volume, shorter processing time, greater penetration depth and better product quality. More recently, the use of synergistic methods for starch modification is being encouraged because they confer better functionality on starch than single methods. This review summarizes the present knowledge on the structure and physicochemical properties of starches from different botanical origins modified using microwave heating alone and in combination with other starch modification methods.
Collapse
Affiliation(s)
- Samson A Oyeyinka
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa; Department of Food Technology, College of Industrial Technology, Bicol University, Legazpi, Philippines.
| | - Olaide A Akintayo
- Department of Home Economics and Food Science, University of Ilorin, Ilorin, Nigeria
| | - Oluwafemi A Adebo
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Eugénie Kayitesi
- Department of Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa.
| |
Collapse
|
74
|
Zheng Y, Ou Y, Zhang C, Zhang Y, Zheng B, Zeng S, Zeng H. The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch. Int J Biol Macromol 2021; 175:49-57. [PMID: 33524480 DOI: 10.1016/j.ijbiomac.2021.01.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
In order to investigate the effects of exogenous V-type starch on the structural properties and dispersion stability of lotus seed starch after autoclave treatment, the crystal structure, molecular structure, and dispersion stability were analyzed and discussed, as well as compared with exogenous A-type and B-type starches. Analysis of structural properties indicated that the addition of different crystal nuclei led the crystallization of disordered helices to a specific direction. The B- and V-type starch addition increased the crystallinities of starch and enhanced the ordered arrangement of disordered helices, whereas A-type starch had no significant positive influence on the stability of starch system. The microstructure observation showed that A- and B-type starch addition led to a rough and porous morphology of starch particles; the presence of V-type starch retarded the agglomeration and retrogradation of starch after autoclaving. Analysis of contact angle and dispersion stability revealed that the addition of various exogenous starch increased the contact angle of starch particles in different extent, suggesting the enhancement of hydrophobicity. But B-type starch addition resulted in the poor dispersion stability compared to A-type starch, instead V-type starch addition improved the dispersion stability of starch in aqueous solution, allowing the particles to stay dispersed for 141.12 ± 6.52 min. These results provided a theoretical basis for the effects of exogenous type starch on original starch properties, and revealed the potential of V-type starch as dispersion stabilizer.
Collapse
Affiliation(s)
- Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chong Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
75
|
Ding Y, Xiao Y, Ouyang Q, Luo F, Lin Q. Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment. ULTRASONICS SONOCHEMISTRY 2021; 70:105350. [PMID: 33010579 PMCID: PMC7786522 DOI: 10.1016/j.ultsonch.2020.105350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 05/10/2023]
Abstract
Chemically modified starch (RS4) was commercially available as a food ingredient, however, there was a lack of knowledge on how ultrasonic treatment (non-thermal technology) modulated the enzymatic resistance of RS4. In this study, structural change of RS4 during ultrasonic treatment and its resulting digestibility was investigated. Results from scanning electron microscopy, particle size analysis, chemical composition analysis, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that ultrasonic treatment remained the granule morphology, increased the apparent amylose content, reduced the particle size, destroyed the crystalline structure, decreased the helical orders, but enhanced the short-range molecular orders of ultrasonic-processed RS4. In vitro digestibility analysis showed that the total content of rapidly digestible starch and slowly digestible starch was increased, whereas the content of resistant starch was decreased. Overall, ultrasonic treatment substantially reduced the enzymatic resistance of RS4, indicating that RS4 was not stability against the non-thermal processing technology of ultrasonic treatment.
Collapse
Affiliation(s)
- Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qunfu Ouyang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
76
|
Guz L, González‐Seligra P, Ochoa‐Yepes O, Estevez‐Areco S, Famá L, Goyanes S. Influence of Different Commercial Modified Cassava Starches on the Physicochemical Properties of Thermoplastic Edible Films Obtained by Flat‐Die Extrusion. STARCH-STARKE 2020. [DOI: 10.1002/star.202000167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Guz
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
- Instituto de Investigación e Ingeniería Ambiental (IIIA‐3ia), CONICET Universidad Nacional de San Martín 25 de Mayo y Francia San Martin Provincia de Buenos Aires 1650 Argentina
| | - Paula González‐Seligra
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Oswaldo Ochoa‐Yepes
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Santiago Estevez‐Areco
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Lucía Famá
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Silvia Goyanes
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| |
Collapse
|
77
|
Ma M, Zhang Y, Chen X, Li H, Sui Z, Corke H. Microwave irradiation differentially affect the physicochemical properties of waxy and non-waxy hull-less barley starch. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
78
|
Li B, Zhang Y, Xu F, Khan MR, Zhang Y, Huang C, Zhu K, Tan L, Chu Z, Liu A. Supramolecular structure of Artocarpus heterophyllus Lam seed starch prepared by improved extrusion cooking technology and its relationship with in vitro digestibility. Food Chem 2020; 336:127716. [PMID: 32768910 DOI: 10.1016/j.foodchem.2020.127716] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Jackfruit seed starch (JFSS) was modified by an improved extrusion cooking technology (IECT), and the supramolecular structure, molecular weight, debranched chain length distributions, relative crystallinity (Rc), and amylose content, were studied. During IECT, the α-1.4-glycosidic bond in amylopectin was broken, which led to decreased radius of gyration (Rg), number-average molar mass (Mn), weight-average molar mass (Mw), long chains and Rc. The medium and short chains and PI (Mw/Mn) increased, while the amylose content hardly changed. The crystalline structure of JFSS was converted from A-type to V-type. Increasing the temperature and screw speed during the treatment significantly increased the medium and short chains and Rg, while it decreased the long chains, amylose, Mn, Mw, PI, and Rc. However, the opposite effect was observed when increasing the moisture content. The in vitro digestibility of JFSS was significantly improved after IECT, due to destruction of starch supramolecular structure according to principal component analysis.
Collapse
Affiliation(s)
- Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Yutong Zhang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, South Korea
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Muhammad Rafiullah Khan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China.
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China.
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Zhong Chu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Aiqin Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| |
Collapse
|
79
|
Wang M, Wu Y, Liu Y, Ouyang J. Effect of Ultrasonic and Microwave Dual-Treatment on the Physicochemical Properties of Chestnut Starch. Polymers (Basel) 2020; 12:polym12081718. [PMID: 32751822 PMCID: PMC7464923 DOI: 10.3390/polym12081718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
This work examined the effect of ultrasound and microwave treatments, separate and in combination, on the physicochemical and functional properties of chestnut starch. The results revealed that the ultrasonic-microwave (UM) and microwave-ultrasonic (MU) dually modified samples exhibited more severe surface damage, weaker birefringence, and lower relative crystallinity and gelatinization enthalpy than the native and single-treated starches. The UM samples showed the highest oil absorption capacity, and the MU samples showed the highest water absorption capacity and the best freeze-thaw stability (five cycles) among all samples. The swelling power, peak, trough, final, and breakdown viscosities, and pasting temperature all decreased regardless of single or dual modification. This study provides a reference for potential industrial applications of ultrasound and microwave treatments for the modification of chestnut starch.
Collapse
Affiliation(s)
- Meng Wang
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing Academy of Science and Technology, Beijing 100089, China;
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China;
| | - Jie Ouyang
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6233-6700; Fax: +86-10-6233-8221
| |
Collapse
|
80
|
Zhang L, Mei JY, Ren MH, Fu Z. Optimization of enzyme-assisted preparation and characterization of Arenga pinnata resistant starch. FOOD STRUCTURE 2020. [DOI: 10.1016/j.foostr.2020.100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
81
|
Tao Y, Yan B, Fan D, Zhang N, Ma S, Wang L, Wu Y, Wang M, Zhao J, Zhang H. Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|