51
|
Li S, Zhao Q, Zhang K, Sun W, Jia X, Yang Y, Yin J, Tang C, Zhang J. Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metallomics 2020; 12:1576-1584. [PMID: 32869810 DOI: 10.1039/d0mt00165a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is closely associated with kidney disease, and renal injury often occurs together with hyposelenemia. This study was designed to reveal the mechanism underlying renal injury induced by Se deficiency in pigs. Twenty-four castrated male Yorkshire pigs were divided into two groups fed either a Se-deficient diet (0.007 mg Se per kg) or a Se-adequate diet (0.3 mg Se per kg). Serum and kidney samples were collected at the 16th week of the trial, processed, and analyzed for serum biochemistry, Se concentration, kidney index markers, histology, selenoprotein mRNA expression, redox status, and inflammatory cytokines. Dietary Se deficiency induced kidney injury, decreased (P < 0.05) Se concentrations, and increased (P < 0.05) kidney index and serum blood urea nitrogen, creatinine, and carbon dioxide values. Histological analysis indicated that Se deficiency induced inflammatory lesions and renal tubular atrophy in the renal medulla. Se deficiency downregulated (P < 0.05) nine selenoprotein genes (GPX1, SELENOW, SELENOH, SELENOP, GPX3, TXNRD2, SELENOI, SELENON, and SELENOM) and upregulated (P < 0.05) SEPHS2 in the kidneys. Se deficiency decreased (P < 0.05) the activity of glutathione peroxidase, thioredoxin reductase, and catalase, as well as the hydroxyl radical inhibition capacity, and increased (P < 0.05) the content of malondialdehyde and nitric oxide. Se deficiency increased (P < 0.05) the expression of the transcription factors NF-κB and HIF-1α, and regulated inflammatory cytokines. Se deficiency increased (P < 0.05) the expression of IL-6, IL-8, IL-12, IL-17, and cyclooxygenase-2, and decreased (P < 0.05) the expression of IL-10, IL-13, and TGF-β. These results indicated that Se deficiency induces kidney injury through the regulation of selenoproteins, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueting Jia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanyuan Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China. and Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
52
|
Sun W, Zhu J, Li S, Tang C, Zhao Q, Zhang J. Selenium supplementation protects against oxidative stress-induced cardiomyocyte cell cycle arrest through activation of PI3K/AKT. Metallomics 2020; 12:1965-1978. [PMID: 33237045 DOI: 10.1039/d0mt00225a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress significantly contributes to heart disease, and thus might be a promising target for ameliorating heart failure. Mounting evidence suggests that selenium has chemotherapeutic potential for treating heart disease due to its regulation of selenoproteins, which play antioxidant regulatory roles. Oxidative stress-induced cardiomyocyte cell cycle arrest contributes to the loss of cardiomyocytes during heart failure. The protective effects and mechanism of selenium against oxidative stress-induced cell cycle arrest in cardiomyocytes warrant further study. H9c2 rat cardiomyoblast cells were treated with hydrogen peroxide in the presence or absence of selenium supplementation. Na2SeO3 pretreatment alleviated H2O2-induced oxidative stress, increased thioredoxin reductase (TXNRD) activity and glutathione peroxidase (GPx) activity and counteracted the H2O2-induced cell cycle arrest at the S phase. These effects were accompanied by attenuation of the H2O2-induced strengthening of the G2/M-phase inhibitory system, including increased mRNA and protein levels of cyclin-dependent kinase 1 (CDK1) and decreased p21 mRNA levels. Notably, Na2SeO3 pretreatment activated the PI3K/AKT signaling pathway, and inhibition of PI3K counteracted the protective effects of selenium on H2O2-induced cell cycle arrest. We corroborated our findings in vivo by inducing oxidative stress in pig heart by feeding a selenium deficient diet, which decreased the TXNRD activity, inactivated PI3K/AKT signaling and strengthened the G2/M-phase inhibitory system. We concluded that the cardioprotective effects of selenium supplementation against oxidative stress-induced cell cycle arrest in cardiomyocytes might be mediated by the selenoprotein-associated (GPx and TXNRD) antioxidant capacity, thereby activating redox status-associated PI3K/AKT pathways, which promote cell cycle progression by targeting the G2/M phase inhibitory system. This study provides new insight into the underlying mechanisms of cardioprotection effects of selenium at the cellular level.
Collapse
Affiliation(s)
- Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | |
Collapse
|