51
|
Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydr Polym 2020; 247:116667. [DOI: 10.1016/j.carbpol.2020.116667] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
|
52
|
Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: Comparison of assays allows assessment of the roles of direct α-amylase inhibition and starch complexation. Food Chem 2020; 343:128423. [PMID: 33168261 DOI: 10.1016/j.foodchem.2020.128423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022]
Abstract
The aim was to determine inhibition of human α-amylase activity by (poly)phenols using maltoheptaoside as substrate with direct chromatographic product quantification, compared to hydrolysis of amylose and amylopectin estimated using 3,5-dinitrosalicylic acid. Acarbose exhibited similar IC50 values (50% inhibition) with maltoheptaoside, amylopectin or amylose as substrates (2.37 ± 0.11, 3.71 ± 0.12 and 2.08 ± 0.01 µM respectively). Epigallocatechin gallate, quercetagetin and punicalagin were weaker inhibitors of hydrolysis of maltoheptaoside (<50% inhibition) than amylose (IC50: epigallocatechin gallate = 20.41 ± 0.25 µM, quercetagetin = 30.15 ± 2.05 µM) or amylopectin. Interference using 3,5-dinitrosalicylic acid was in the order punicalagin > epigallocatechin gallate > quercetagetin, with minimal interference using maltoheptaoside as substrate. The main inhibition mechanism of epigallocatechin gallate and punicalagin was through complexation with starch, especially amylose, whereas only quercetagetin additionally binds to the α-amylase active site. Interference is minimised using maltoheptaoside as substrate with product detection by chromatography, potentially allowing assessment of direct enzyme inhibition by almost any compound.
Collapse
|
53
|
Zheng Y, Tian J, Kong X, Wu D, Chen S, Liu D, Ye X. Proanthocyanidins from Chinese berry leaves modified the physicochemical properties and digestive characteristic of rice starch. Food Chem 2020; 335:127666. [PMID: 32739821 DOI: 10.1016/j.foodchem.2020.127666] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Proanthocyanidins extracted from Chinese berry leaves (CBLPs) were heated with rice starch in aqueous solution to prepare polyphenols-starch complexes. The physicochemical properties of the complexes were characterized with XRD, DSC, RVA and FT-IR and starch constituents were also analyzed with an enzyme method. Results indicated that the addition of CBLPs destroyed the long ordered structure of rice starch rather than the short ordered structure, since the crystallinity decreased from 21.96% to 18.90% and the ratio of 1047 cm-1/1022 cm-1 showed little difference, consistent with the lower ΔH of complexes with higher CBLPs content. Additionally, the CBLPs-rice starch complexes showed a significantly lower content of rapidly digested starch (RDS, 45.64 ± 3.25%) than that of the native rice starch (67.76 ± 2.15%). These results indicated that CBLPs complexes with rice starch might be a novel way to prepare functional starch with slower digestion.
Collapse
Affiliation(s)
- Yuxue Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
54
|
Debelo H, Li M, Ferruzzi MG. Processing influences on food polyphenol profiles and biological activity. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
55
|
Patiño-Rodríguez O, Agama-Acevedo E, Ramos-Lopez G, Bello-Pérez LA. Unripe mango kernel starch: Partial characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Giuberti G, Rocchetti G, Lucini L. Interactions between phenolic compounds, amylolytic enzymes and starch: an updated overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|