51
|
Titanium dioxide nanoparticle-based hydroxyl and superoxide radical production for oxidative stress biological simulations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Effect of air frying and baking on physicochemical properties and digestive properties of scallop (Patinopecten yessoensis) adductor muscle. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
53
|
Enhancement of surimi gel properties through the synergetic effect of fucoidan and oligochitosan. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
54
|
Zhao B, Zhang Y, Sun B, Wang S, Zang M, Wang H, Wu Q. Insights into the trace Sr 2+ impact on the gel properties and spatial structure of mutton myofibrillar proteins. Food Res Int 2023; 164:112298. [PMID: 36737899 DOI: 10.1016/j.foodres.2022.112298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Myofibrillar proteins (MPs) and the quality of meat strongly depend on the properties of MP gels, which in turn depend on several parameters that include the thermal history and the concentration of metal ions. Strontium element (Sr) widely exists in mineral water and is found as strontium ions (Sr2+), which is an essential trace element for humans. This study investigated the effects of trace Sr2+ on the structure-function relationship of mutton MPs, as well as their gels with water. Trace concentrations of Sr2+ were found to significantly alter the conformation of the MPs. An increase in Sr2+ concentration was associated with a reduction in the tightness and strength of the gel and a significant increase in its water-holding capacity As compared to the untreated control sample, the solubility, particle size, and the magnitude of the Zeta potential of the gels increased by 13.03 %, 12.62 %, and 19.73 %, respectively, whereas the water retention capacity and the gel strength increased by 23.13 % and 21.90 %, at a Sr2+ concentration of 5.0 mg/L. Molecular docking predicted an increase in ionic bonds and disulfide bonds because Sr2+ had a strong interaction with hydrophilic amino acids and acidic amino acids. The analysis of molecular forces further verified the significant facilitation of interactions between MP molecules with the induction of Sr2+. As compare to the untreated control group, the ionic and disulfide bonds increased by 141.17 % and 66.94 %, when treated with 5.0 mg/L Sr2+. These changes were likely due to the enhancement of protein-protein interactions caused by Sr2+, which could induce MP molecules to properly unfold and aggregate in gel formation. The results could provide a basis for improving the texture and the quality of meat and meat products.
Collapse
Affiliation(s)
- Bing Zhao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100068, China; China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100068, China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100068, China.
| | - Shouwei Wang
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China.
| | - Mingwu Zang
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| | - Hui Wang
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| | - Qianrong Wu
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| |
Collapse
|
55
|
Bernardo YADA, do Rosario DKA, Conte-Junior CA. Principles, Application, and Gaps of High-Intensity Ultrasound and High-Pressure Processing to Improve Meat Texture. Foods 2023; 12:476. [PMID: 36766002 PMCID: PMC9914770 DOI: 10.3390/foods12030476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
In this study, we evaluate the most recently applied emerging non-thermal technologies (NTT) to improve meat tenderization, high-intensity ultrasound (HIUS), and high-pressure processing (HPP), aiming to understand if individual effects are beneficial and how extrinsic and intrinsic factors influence meat toughness. We performed a systematic literature search and meta-analysis in four databases (Web of Science, Scopus, Embase, and PubMed). Among the recovered articles (n = 192), 59 studies were included. We found better sonication time in the range of 2-20 min. Muscle composition significantly influences HIUS effects, being type IIb fiber muscles more difficult to tenderize (p < 0.05). HPP effects are beneficial to tenderization at 200-250 MPa and 15-20 min, being lower and higher conditions considered inconclusive, tending to tenderization. Despite these results, undesirable physicochemical, microstructural, and sensory alterations are still unknown or represent barriers against applying NTT at the industrial level. Optimization studies and more robust analyses are suggested to enable its future implementation. Moreover, combining NTT with plant enzymes demonstrates an interesting alternative to improve the tenderization effect caused by NTT. Therefore, HIUS and HPP are promising technologies for tenderization and should be optimized considering time, intensity, pressure, muscle composition, undesirable changes, and combination with other methods.
Collapse
Affiliation(s)
- Yago Alves de Aguiar Bernardo
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-901, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Denes Kaic Alves do Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-901, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo (UFES), Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-901, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
56
|
Zhang D, Liu J, Ruan J, Jiang Z, Gong F, Lei W, Wang X, Zhao J, Meng Q, Xu M, Tang J, Li H. Combination of millet pepper and garlic water extracts improves the antioxidant capability of myofibrillar protein under malondialdehyde-induced oxidative modification. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
57
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
58
|
Huang Y, Zhou Y, Liu Y, Wan J, Hu P, Liu L, Li M, Zhou Y, Gu S, Chen D, Hu B, Hu K, Zhu Q. Effects of tea branch liquid smoke on oxidation and structure of myofibrillar protein derived from pork tenderloin during curing. Food Chem X 2022; 17:100544. [PMID: 36845486 PMCID: PMC9943755 DOI: 10.1016/j.fochx.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
This study focused on how different concentrations of tea branch liquid smoke (TLS) in the curing solution impacted the physicochemical properties and antioxidant properties of pork tenderloin. Five experimental (1.25 mL/kg, 2.5 mL/kg, 5 mL/kg, 10 mL/kg, 20 mL/kg) and blank groups set up over 4 days, and it was found that the physicochemical indexes, antioxidant capacity, thermal stability and protein network structure of the cured meat using 5 mL/kg of liquid smoke were excellent than the other groups used (P < 0.05). However, concentrations at 20 mL/kg accelerated protein oxidation. Low frequency nuclear magnetic resonance (LFNHR) revealed that TLS also improved the water holding capacity of the cured meat by increasing the percentage of bound water. Additionally, the correlation analysis demonstrated that the inoxidizability of myofibrillar protein was significantly related to cooking loss and water distribution, which were adjusted by changing the usage of liquid smoke.
Collapse
Affiliation(s)
- Yanpei Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Mingming Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Dan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Bokai Hu
- Guizhou Provincial Institute of Walnut, Guizhou Academy of Forestry, Guiyang 550005, China
| | - Ke Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China,Corresponding author at: School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
59
|
Zhu X, Shi X, Liu S, Gu Y, Liu J, Fu Q, Wang R. Physicochemical properties and gel-forming ability changes of duck myofibrillar protein induced by hydroxyl radical oxidizing systems. Front Nutr 2022; 9:1029116. [PMID: 36466406 PMCID: PMC9709213 DOI: 10.3389/fnut.2022.1029116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This paper focuses on the changes of physicochemical properties and gel-forming ability of duck myofibrillar proteins (DMPs) induced using hydroxyl radical oxidizing systems. DMPs were firstly extracted and then oxidized at various H2O2 concentrations (0, 4, 8, and 12 mmol/L) using Fenton reagent (Fe3+-Vc-H2O2) to generate hydroxyl radicals, and the effects of hydroxyl radical oxidation on the physicochemical changes and heat-induced gel-forming capacity of DMPs were analyzed. We observed obvious increases in the carbonyl content (p < 0.05) and surface hydrophobicity of DMPs with increasing of H2O2 concentrations (0-12 mmol/L). In contrast, the free thiol content (p < 0.05) and water retention ability of DMPs decreased with increasing H2O2 concentrations (0-12 mmol/L). These physicochemical changes suggested that high concentrations of hydroxyl radicals significantly altered the biochemical structure of DMPs, which was not conducive to the formation of a gel mesh structure. Furthermore, the gel properties were reduced based on the significant decrease in the water holding capacity (p < 0.05) and increased transformation of immobilized water of the heat-induced gel to free water (p < 0.05). With the increase of H2O2 concentrations, secondary structure of proteins analysis results indicated α-helix content decreased significantly (p < 0.05), however, random coil content increased (p < 0.05). And more cross-linked myosin heavy chains were detected at higher H2O2 concentrations groups through immunoblot analysis (p < 0.05). Therefore, as H2O2 concentrations increased, the gel mesh structure became loose and porous, and the storage modulus and loss modulus values also decreased during heating. These results demonstrated that excessive oxidation led to explicit cross-linking of DMPs, which negatively affected the gel-forming ability of DMPs. Hence, when processing duck meat products, the oxidation level of meat gel products should be controlled, or suitable antioxidants should be added.
Collapse
Affiliation(s)
- Xueshen Zhu
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| | - Xiandong Shi
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
- School of Life Science, Nanjing Normal University, Nanjing, China
| | - Shaohua Liu
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| | - Ying Gu
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| | - Junya Liu
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| | - Qingquan Fu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Renlei Wang
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| |
Collapse
|
60
|
Effects of lysine and arginine addition combined with high-pressure microfluidization treatment on the structure, solubility, and stability of pork myofibrillar proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Protective Effects of Four Natural Antioxidants on Hydroxyl-Radical-Induced Lipid and Protein Oxidation in Yak Meat. Foods 2022; 11:foods11193062. [PMID: 36230138 PMCID: PMC9564240 DOI: 10.3390/foods11193062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
The impacts of natural antioxidants, including ferulic acid, diallyl sulfide, α-tocopherol, and rutin, at a level of 0.2 g/kg on lipid and protein oxidation of minced yak meat in a hydroxyl-radical-generating system were investigated, and the effectiveness was compared with synthetic antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). The exposure of yak meat to oxidative stress from 12 h to 24 h elevated lipid and protein oxidation. Treatments with antioxidants resulted in significantly lower peroxides, conjugated dienes, and thiobarbituric acid-reactive substances, and were also effective in retarding the formation of carbonyl groups, reducing the loss of sulfhydryl groups and protecting α-helix contents, of which ferulic acid and rutin were the most effective. Myosin heavy chain underwent lower degradation in the samples treated with ferulic acid or rutin compared with the oxidized control and other antioxidant treatments, while that of the BHT treatment showed a similar intensity with oxidized control at 24 h of oxidation. The physical stability of myofibrillar proteins in samples with antioxidants from high to low was rutin, ferulic acid, α-tocopherol, and BHT~diallyl sulfide. These results indicate that rutin and ferulic acid may be promising antioxidants in inhibiting the oxidative reactions during the processing of yak meat.
Collapse
|
62
|
Zhang D, Yang X, Wang Y, Wang B, Wang S, Chang J, Liu S, Wang H. Proanthocyanidin B2 and transglutaminase synergistically improves gel properties of oxidized myofibrillar proteins. Food Chem 2022; 391:133262. [DOI: 10.1016/j.foodchem.2022.133262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
|
63
|
Liu J, Cheng D, Zhang D, Han L, Gan Y, Zhang T, Yu Y. Incorporating ε-Polylysine Hydrochloride, Tea Polyphenols, Nisin, and Ascorbic Acid into Edible Coating Solutions: Effect on Quality and Shelf Life of Marinated Eggs. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
64
|
Liu ZW, Zhou YX, Tan YC, Cheng JH, Bekhit AED, Mousavi Khaneghah A, Aadil RM. Influence of mild oxidation induced through DBD-plasma treatment on the structure and gelling properties of glycinin. Int J Biol Macromol 2022; 220:1454-1463. [PMID: 36122773 DOI: 10.1016/j.ijbiomac.2022.09.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The effects of dielectric-barrier discharge (DBD) plasma treatment (20 s to 120 s treatment time with 40 kV, 12 kHz) induced mild oxidation on the gelling properties, and related structural changes of glycinin were investigated. The gelling ability of glycinin was improved by the mild oxidation induced by the plasma treatment. Treated glycinin gels exhibited a continuous and uniform network microstructure. Samples treated for 120 s had a 2.07-, 3.99- and 2.03-fold increase in hardness, chewiness, and resilience compared to the 20 s treated samples. Structural analyses showed that primary and secondary structures of glycinin were unaffected. The tertiary structure was shifted, accompanied by a decrease in free sulfhydryl (-SH) content. At the same time, carbonyl content and average particle diameter were increased by DBD treatment. The DBD treatment facilitated the generation/exchange of intermolecular disulfide bonds and enhanced gelling properties of glycinin. It is concluded that controlled plasma-induced protein oxidation can improve protein functionality.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying-Xue Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Cheng Tan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
65
|
Li X, He Z, Xu J, Su C, Xiao X, Zhang L, Zhang H, Li H. Conformational Changes in Proteins Caused by High-Pressure Homogenization Promote Nanoparticle Formation in Natural Bone Aqueous Suspension. Foods 2022; 11:2869. [PMID: 36140999 PMCID: PMC9498631 DOI: 10.3390/foods11182869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a natural calcium resource, animal bone needs to be miniaturized to the nanoscale to improve palatability and absorption capacity. To explore the mechanism of high-pressure homogenization (HPH) in preparing natural bone aqueous nanosuspensions, the relationships between the changes in protein conformation, solubility and quality characteristics of rabbit bone aqueous suspensions (RBAS) prepared by different HPH cycles were studied. The results showed that the improvements in particle size, stability and calcium solubility of RBASs could be mainly attributed to the improvement of protein solubility induced by the changes in protein conformation. HPH treatment led to the denaturation and degradation of protein in rabbit bone, generating soluble peptides and improving the stability of the suspensions by enhancing the surface charge of the particles. When collagen as the main protein was partially degraded, the hydroxyapatite in the bone was crushed into tiny particles. The increase in the particle-specific surface area led to the release of calcium ions, which chelated with the peptides to produce peptide calcium. However, excessive HPH treatment caused the production of protein macromolecular aggregates and affected the quality of RBASs. This study is helpful to promote the application of HPH technology in animal bone nanoprocessing.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Chang Su
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xu Xiao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Huanhuan Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
66
|
Oxidative stability and gelation properties of myofibrillar protein from chicken breast after post-mortem frozen storage as influenced by phenolic compound-pterostilbene. Int J Biol Macromol 2022; 221:1271-1281. [PMID: 36113593 DOI: 10.1016/j.ijbiomac.2022.09.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
The aim of this study was to elucidate the effects of dietary pterostilbene supplementation on physicochemical changes and gel properties of myofibrillar protein (MP) in chicken when subjected to short-term frozen storage. The results showed that pterostilbene supplementation diminished the oxidation of MP compared to the control, as the carbonyl content was significantly reduced and the loss of sulfhydryl and free amino groups was slowed. Meanwhile, the surface hydrophobicity and insolubility of MP were significantly reduced. FT-IR and endogenous fluorescence spectroscopy analysis indicated that dietary pterostilbene inhibited the unfolding of protein structure and the transition of α-helix to β-sheet structure. The integrity of the protein structure contributed to the gel quality. The strength, whiteness and water-holding capacity (WHC) of MP gels were improved in the pterostilbene treatment group. In terms of microstructure, pterostilbene facilitated the formation of dense and homogeneous gel network structure. In summary, these findings suggest that pterostilbene could be used as a dietary supplement to maintain the structural stability of MP in postmortem chicken breast muscle, allowing for excellent gel functional properties.
Collapse
|
67
|
Huang P, Wang Z, Feng X, Kan J. Promotion of fishy odor release by phenolic compounds through interactions with myofibrillar protein. Food Chem 2022; 387:132852. [DOI: 10.1016/j.foodchem.2022.132852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
|
68
|
The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022; 11:foods11162427. [PMID: 36010427 PMCID: PMC9407609 DOI: 10.3390/foods11162427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Protein, which is the main component of meat, is degraded and oxidized during meat fermentation. During fermentation, macromolecular proteins are degraded into small peptides and free amino acids, and oxidation leads to amino acid side chain modification, molecular crosslinking polymerization, and peptide chain cleavage. At different metabolic levels, these reactions may affect the protein structure and the color, tenderness, flavor, and edible value of fermented meat products. Lactic acid bacteria are currently a research hotspot for application in the fermented meat industry. Its growth metabolism and derivative metabolites formed during the fermentation of meat products regulate protein degradation and oxidation to a certain extent and improve product quality. Therefore, this paper mainly reviews the changes occurring in proteins in fermented meat products and their effects on the quality of the products. Referring to studies on the effects of lactic acid bacteria on protein degradation and oxidation from all over the world, this review aims to provide a relevant reference for improving the quality of fermented meat products.
Collapse
|
69
|
Wang Z, Yang C, Tang D, Yang X, Zhang L, Yu Q. Effects of selenium yeast and jujube powder dietary supplements on conformational and functional properties of post-mortem chicken myofibrillar protein. Front Nutr 2022; 9:954397. [PMID: 35990324 PMCID: PMC9389338 DOI: 10.3389/fnut.2022.954397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to evaluate the effects of selenium yeast and jujube powder on the structure and functional properties of post-mortem myofibrillar protein (MP) in white feather broilers. Changes in the structure (surface hydrophobicity, secondary structure, and tertiary structure), functional properties (solubility, turbidity, emulsifying, and foaming characteristics), and gel properties (gel strength, springiness, and water-holding capacity) of the MPs of white feather broiler, which were fed with different concentrations of selenium yeast or/and jujube powder (selenium yeast: 0,0.3, and 0.6 mg/kg; jujube powder: 8% to replace corn) for 42 days, were determined at 0, 24, and 72 h post-mortem. The results showed that with increasing concentrations of selenium yeast and jujube powder in the diet, the α-helix content, solubility, emulsification, and foaming of post-mortem chicken MP increased significantly (P < 0.05). The gel strength, springiness, and water-holding capacity of MP also increased, but the differences between the treatment groups were not significant (P > 0.05). In addition, the β-folding content and turbidity of MP decreased significantly (P < 0.05). Both the increase in selenium yeast levels and the addition of jujube powder improved the structural integrity and functional properties of MP. The best improvement effect was found in the combination group of high-dose selenium yeast and jujube powder, and there were significant interactions between them in the indices of α-helix, β-folding, turbidity, emulsification, and foam stability of MP. In conclusion, supplementing diets with seleniumyeast and jujube powder could maintain the structural stability of MPs in post-mortem chicken breast, leading to good functional properties. The results of this study may provide new insights into the effects of pre-slaughter feeding on post-mortem muscle MP conformation control and quality improvement.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Chao Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
70
|
Effect of oxidation on the process of thermal gelation of chicken breast myofibrillar protein. Food Chem 2022; 384:132368. [DOI: 10.1016/j.foodchem.2022.132368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022]
|
71
|
Wang Z, Liu X, Ojangba T, Zhang L, Yu Q, Han L. Storage and Packaging Effects on the Protein Oxidative Stability, Functional and Digestion Characteristics of Yak Rumen Smooth Muscle. Foods 2022; 11:foods11142099. [PMID: 35885342 PMCID: PMC9319803 DOI: 10.3390/foods11142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to investigate the effects on protein oxidative stability, functional and digestion characteristics of yak rumen smooth muscle with overwrap packaging using oxygen-permeable film (OWP) and vacuum packaging bag (VP) during storage (0, 7, 14, 28, 42, 56, 84, 168 and 364 days) at −18 °C. The results show that yak rumen smooth muscle was oxidized with frozen storage through the formation of protein carbonyls and disulfide bonds, the loss of total sulfhydryl. The emulsifying activity of yak rumen smooth muscle protein (SMP) under VP began to perform a higher level than that under OWP after 14 days, and the foaming capacity under VP showed the highest level on the 28th day of 111.23%. The turbidity under VP reached the minimum 0.356 on the 28th day as well, followed by significantly increasing on the 56th day compared with OWP. The digestibility of yak rumen SMP under both OWP and VP reached the maximum on the 28th day of frozen storage. Moreover, yak rumen under VP at 28–56 days of frozen storage had good functional properties and high digestibility of SMP, which showed better edible value.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| | - Xiaobo Liu
- Gansu Research Institute of Light Industry Co., Ltd., Lanzhou 730070, China;
| | - Theodora Ojangba
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
- Correspondence: ; Tel.: +86-937-7631-201
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| |
Collapse
|
72
|
Zheng Y, Zhang L, Qiu Z, Yu Z, Shi W, Wang X. Comparison of oxidation extent, structural characteristics, and oxidation sites of myofibrillar protein affected by hydroxyl radicals and lipid-oxidizing system. Food Chem 2022; 396:133710. [PMID: 35872498 DOI: 10.1016/j.foodchem.2022.133710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
To compare the differences between direct protein oxidation (PO) and lipid-derived PO, the myofibrillar protein (MP) of obscure pufferfish was oxidatively modified by the hydroxyl radical oxidizing system (HOS) and the lipid-oxidizing system (LOS). The degree of oxidation, structural characteristics, and oxidation sites in MP were assessed. The results showed there was no significant thiol loss in LOS, compared with a 77.64% loss observed in case of the HOS. The secondary structure of MP was more vulnerable to HOS, but the tertiary structure was more susceptible to LOS. The cross-linking was largely attributed to the reversible disulfide links in HOS and the irreversible covalent linkages in LOS. Six amino acids and 10 specific oxidant products were identified in HOS. Only three amino acids and three specific oxidant products were identified in LOS. These findings may help deepen the understanding regarding the mechanism underlying PO in protein- and lipid-rich food materials.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, P.R.China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zehui Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
73
|
Wang H, Wang Y, Wu D, Gao S, Jiang S, Tang H, Lv G, Xiaobo Z, Meng X. Changes in physicochemical quality and protein properties of porcine
longissimus lumborum
during dry ageing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hengpeng Wang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Yinlan Wang
- School of Food Science, Jiangsu College of Tourism Yangzhou 225000 China
| | - Danxuan Wu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Sumin Gao
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Songsong Jiang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Hailian Tang
- Suzhou Tourism and Finance Institute, Jiangsu Union Technical Institue Suzhou 215000 China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Zou Xiaobo
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiangren Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| |
Collapse
|
74
|
Wang N, Hu L, Guo X, Zhao Y, Deng X, Lei Y, Zhang L, Zhang J. Effects of malondialdehyde on the protein oxidation and protein degradation of Coregonus Peled myofibrillar protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Li R, Guo M, Liao E, Wang Q, Peng L, Jin W, Wang H. Effects of repeated freezing and thawing on myofibrillar protein and quality characteristics of marinated Enshi black pork. Food Chem 2022; 378:131994. [PMID: 35030461 DOI: 10.1016/j.foodchem.2021.131994] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/04/2022]
Abstract
Repeated freeze-thaw is one of the main reasons for quality deterioration of frozen meat products. The study focused on the changes of endogenous fluorescence, secondary structure, microstructure, and water retention and distribution in marinated and unmarinated Enshi black pork after 10 freeze-thaw cycles. The results revealed that marinated treatment significantly reduced the thaw and centrifugal loss (P < 0.05), and increased endogenous fluorescence intensity of samples. During the entire freeze-thaw process, free water was undetectable in marinated group. After the first 4 cycles, α-helix percentage in marinated group was higher than that in control group. Scanning electron microscopy results suggested that there was no obvious increase in muscle fiber gap until 8 cycles in marinated group. Conclusively, moderate marination could slow down the deterioration of myofibrillar protein and pork quality, but it would be better to limit freeze-thaw cycles within 4 to maintain the quality of marinated Enshi black pork.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengyan Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan 430023, China
| | - Qi Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lijuan Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan 430023, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan 430023, China.
| |
Collapse
|
76
|
Lei Y, Deng X, Zhang Z, Guo X, Zhang J. Effects of oxidation on the physicochemical properties and degradation of mutton myofibrillar proteins. J Food Sci 2022; 87:2932-2942. [PMID: 35638344 DOI: 10.1111/1750-3841.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Tenderness affects mutton quality and price, and the degradation of myofibrillar protein (MP) is critical to improve tenderness. We investigated the oxidative modification of mutton MP by hydroxyl radicals (OH) and the effects of this modification on the proteolysis of MP by µ-calpain. As the H2 O2 concentrations increased, the carbonyl and dityrosine contents and the surface hydrophobicity of MP all display an increasing trend, whereas the total sulfhydryl and intrinsic fluorescence intensity of MP declines significantly. SDS-PAGE electrophoresis indicates that disulfide bonds and other covalent bonds led to protein cross-linking and aggregation. After adding µ-calpain, with increasing oxidation, the degradation percentage of myosin heavy chain (MHC) increases considerably and actin degradation is promoted, while the proteolysis of troponin-T and desmin is inhibited. These data suggest that·OH can change MP physicochemical properties and its susceptibility to µ-calpain. Future investigations will focus on the effect of oxidation on the degradation of MP by other proteases, such as cathepsins and caspase and the effect of oxidation on these enzymes. PRACTICAL APPLICATION: The calpain system, particularly µ-calpain, plays a pivotal role in postmortem tenderization of meat. Protein oxidative modifications influence meat tenderness mainly by regulating proteolysis. An investigation of the effect of oxidation on the proteolytic susceptibility of MP to degradation by µ-calpain allows for the monitoring of the association between protein oxidation and meat tenderness.
Collapse
Affiliation(s)
- Yongdong Lei
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China.,Food Quality Supervision and Testing Center of Ministry of Agriculture, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Xiaorong Deng
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| | - Zhiwei Zhang
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| | - Xin Guo
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| | - Jian Zhang
- School of Food Science and Technology, Food College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
77
|
A multivariate insight into the organoleptic properties of porcine muscle by ultrasound-assisted brining: Protein oxidation, water state and microstructure. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Li X, Deng X, Guo X, Wei Y, Zhao Y, Guo X, Zhu X, Zhang J, Hu L. Two-dimensional gel analysis to investigate the effect of hydroxyl radical oxidation on freshness indicator protein of Coregonus peled during 4 °C storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
79
|
Wang J, Li J, Wang R, Xu F, Zeng X. Improving water retention of chicken breast meats by CaCl
2
combined with pulsed electric fields. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jiachen Wang
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Jian Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Rui Wang
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Fei‐Yue Xu
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
80
|
Wang X, Zhou P, Cheng J, Yang H, Zou J, Liu X. The role of endogenous enzyme from straw mushroom (Volvariella volvacea) in improving taste and volatile flavor characteristics of Cantonese sausage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
81
|
The quality properties of frozen large yellow croaker fillets during temperature fluctuation cycles: improvement by cellobiose and carboxylated cellulose nanofibers. Int J Biol Macromol 2022; 194:499-509. [PMID: 34822836 DOI: 10.1016/j.ijbiomac.2021.11.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Frozen aquatic products undergo unavoidable quality changes owing to temperature fluctuations during frozen storage and distribution. This study investigated the effects of 1% cellobiose (CB), and 0.5 and 1% carboxylated cellulose nanofibers (CNF) on ice crystal growth and recrystallization of frozen large yellow croaker fillets exposed to temperature fluctuations. Denser and more uniformly distributed ice crystals were observed in the CB- and CNF-treated samples than in the water-treated samples. Furthermore, the addition of CB and CNF suppressed the conversion of bound water to frozen water in the samples during temperature fluctuation cycles, played a positive role in fixing the ionic and hydrogen bonds that stabilize the protein structure, limited the conformational transition from α-helix to β-sheet, and improved protein thermal stability. Based on turbidity, zeta potential, and confocal laser scanning microscopy (CLSM) analyses, the presence of CB and CNF restricted the protein aggregation. Compared with CB, CNF molecules with abundant carboxyl functional groups and longer morphology exhibited better cryoprotective effects. Moreover, the fillets were more improved protected from mechanical damage induced by large ice crystals at a higher CNF concentration. This study reveals the potential of CB and CNF as novel cryoprotectants.
Collapse
|
82
|
Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M, Prieto MA, Bohrer B, Lorenzo JM. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants (Basel) 2021; 11:60. [PMID: 35052564 PMCID: PMC8773412 DOI: 10.3390/antiox11010060] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Muscle foods and their products are a fundamental part of the human diet. The high protein content found in muscle foods, as well as the high content of essential amino acids, provides an appropriate composition to complete the nutritional requirements of humans. However, due to their special composition, they are susceptible to oxidative degradation. In this sense, proteins are highly susceptible to oxidative reactions. However, in contrast to lipid oxidation, which has been studied in depth for decades, protein oxidation of muscle foods has been investigated much less. Moreover, these reactions have an important influence on the quality of muscle foods, from physico-chemical, techno-functional, and nutritional perspectives. In this regard, the loss of essential nutrients, the impairment of texture, water-holding capacity, color and flavor, and the formation of toxic substances are some of the direct consequences of protein oxidation. The loss of quality for muscle foods results in consumer rejection and substantial levels of economic losses, and thus the control of oxidative processes is of vital importance for the food industry. Nonetheless, the complexity of the reactions involved in protein oxidation and the many different factors that influence these reactions make the mechanisms of protein oxidation difficult to fully understand. Therefore, the present manuscript reviews the fundamental mechanisms of protein oxidation, the most important oxidative reactions, the main factors that influence protein oxidation, and the currently available analytical methods to quantify compounds derived from protein oxidation reactions. Finally, the main effects of protein oxidation on the quality of muscle foods, both from physico-chemical and nutritional points of view, are also discussed.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Benjamin Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
- Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
83
|
Hu C, Xie J. The effect of multiple freeze–thaw cycles on protein oxidation and quality of
Trachurus murphyi. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chunlin Hu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
84
|
Tan M, Ding Z, Mei J, Xie J. Effect of cellobiose on the myofibrillar protein denaturation induced by pH changes during freeze-thaw cycles. Food Chem 2021; 373:131511. [PMID: 34763934 DOI: 10.1016/j.foodchem.2021.131511] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 11/04/2022]
Abstract
The aim of this study was to investigate myofibrillar protein (MFP) denaturation induced by pH changes during freeze-thaw (FT) cycles, and to propose an effective mitigation strategy. Owing to the selective crystallization of Na2HPO4·12H2O and the consequent pH change, a pH change of 3.32 units was observed when the MFP solution were frozen. The surface hydrophobicity, particle size and confocal laser scanning microscopy showed that the protein molecules gradually unfolded and formed larger protein aggregation as the number of FT cycles increases. Additionally, protein degradation, secondary and tertiary structure alterations suggested that the FT cycle could disrupt structural integrity. The addition of cellobiose could maximize the inhibition of pH changes (decrease of ∼0.62 unit), no Na2HPO4·12H2O crystallization was observed by X-ray diffraction. Cellobiose could minimize FT damage to myofibrillar protein, which was closest to the control. Thus, cellobiose can be used as a new and effective cryoprotectant.
Collapse
Affiliation(s)
- Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
85
|
Jiao X, Su R, Zhu H, Yan B, Wang Q, Cao H, Huang J, Zhao J, Zhang H, Fan D. Effect of lipase incorporation on gelling properties of catfish (Clarias lazera) surimi and its mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4498-4505. [PMID: 33448433 DOI: 10.1002/jsfa.11090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recently, fatty fish have been utilized as a potential approach for the fabrication of surimi products, with the yield of fatty fish surimi being > 10 000 tons in 2019. However, the gelling properties of catfish surimi can be influenced by intermuscular lipid. Lipase could effectively enhance the gel quality of catfish surimi gels, although the chemical forces involved in gel formation and alteration in lipid and protein oxidation status are not well understood. The present study investigated the gelation-enhancing effects of lipase on catfish surimi based on changes in chemical oxidation interactions. RESULTS The addition of 7.5 g kg-1 lipase significantly increased the hydrophobic interactions and disulfide bond contents, both of which facilitated gel formation, in surimi gels. The 2-thiobarbituric acid reactive substance and carbonyl concentrations demonstrated that lipase promoted lipid and protein oxidations. Furthermore, an appropriate dose of malondialdehyde accelerated protein oxidation, thereby resulting in the covalent cross-linking of proteins. Consequently, the gel strength increased from 55.72 to 127.71 g × cm with lipase contents of up to 7.5 g kg-1 , and strong chemical cross-linking and a compact network were observed via sodium dodecyl sulfate polyacrylamide gel electrophoresis and scanning electron microscopy. However, excessive oxidation led to the degeneration of the gel matrix. A schematic mechanism, mainly based on the chemical changes, is proposed. CONCLUSION The present study revealed the gelation mechanism of catfish surimi gels with lipase, and suggested that lipase treatments may be an effective approach for improving the textural properties of fatty fish surimi gels. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruihua Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huaping Zhu
- China Rural Technology Development Center, Beijing, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongwei Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen, China
- Fujian Anjoyfood Share Co. Ltd, Xiamen, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
86
|
Liu C, Li W, Zhou M, Yi S, Ye B, Mi H, Li J, Wang J, Li X. Effect of oxidation modification induced by peroxyl radicals on the physicochemical and gel characteristics of grass carp myofibrillar protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01123-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Zhang Y, Yuan JL, Fan C, Yan P, Kang X. Fabrication and characteristics of porcine plasma protein cold-set gel: Influence of the aggregates produced by glucono-δ-lactone acidification on microbial transglutaminase catalysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
88
|
Liu P, Zhang Z, Guo X, Zhu X, Mao X, Guo X, Deng X, Zhang J. μ-Calpain oxidation and proteolytic changes on myofibrillar proteins from Coregonus Peled in vitro. Food Chem 2021; 361:130100. [PMID: 34044215 DOI: 10.1016/j.foodchem.2021.130100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the structural properties of μ-calpain induced by hydroxyl radical oxidation and its effect on the degradation of myofibrillar protein (MP) from the dorsal muscles of Coregonus peled. The carbonyl and sulfhydryl content of μ-calpain changed significantly after oxidation. The content of α-helix in the secondary structure decreased from 0.825 to 0.232 and the changes in intrinsic fluorescence and ultraviolet (UV) absorption spectra indicated that oxidation could cause the expansion and aggregation of µ-calpain molecules. Changes in µ-calpain structure could improve the activity of µ-calpain, reaching the highest value at 0.5 mM H2O2. The highest µ-calpain activity facilitate the degradation of unoxidized MP, while the degradation of oxidized MP was facilitated at the 1 mM H2O2. Thus, our results provide a scientific basis for the interaction mechanism among hydroxyl radical oxidation, µ-calpain, and MP degradation.
Collapse
Affiliation(s)
- Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiwei Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
89
|
Feng X, Wu D, Yang K, Wang L, Wang X, Ma J, Zhang Y, Wang C, Zhou Y, Sun W. Effect of sarcoplasmic proteins oxidation on the gel properties of myofibrillar proteins from pork muscles. J Food Sci 2021; 86:1835-1844. [PMID: 33856047 DOI: 10.1111/1750-3841.15687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
This study investigated the influence of sarcoplasmic proteins (SPs) treated by the oxidation system (0.1 mmol/L FeCl3 , 0.1 mmol/L ascorbic acid, and 0, 1, 5, 10 mmol/L H2 O2 ) on the properties of pork myofibrillar proteins (MPs) gel. After oxidation treatment, the SPs showed an increased in carbonyl content and a decreased in total sulfhydryl content, coupled with the cross-linking of protein components by disulfide bonds and covalent bonds. The MPs gel with SPs oxidized at 1 mmol/L H2 O2 exhibited the maximal strength while the minimal water holding capacity (WHC). The WHC of MPs gel was significantly decreased with increasing SPs oxidation, leading to the increase of free water and the decrease of immobilized water in the gel system. The microstructures of MPs gels with moderately (1 mmol/L H2 O2 ) oxidized SPs showed a more compact and smaller pore gel network than MPs alone, suggesting adding oxidized SPs can expel water trapped in the gel. Furthermore, the environmental polarity of aliphatic C-H groups increased with SPs oxidation.
Collapse
Affiliation(s)
- Xiaolong Feng
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Xian Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Caili Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Yuanhua Zhou
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
90
|
Zhang D, Zhang Y, Huang Y, Chen L, Bao P, Fang H, Zhou C. l-Arginine and l-Lysine Alleviate Myosin from Oxidation: Their Role in Maintaining Myosin's Emulsifying Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3189-3198. [PMID: 33496584 DOI: 10.1021/acs.jafc.0c06095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the alleviative effects of l-arginine and l-lysine on the emulsifying properties and structural changes of myosin under hydroxyl radical (·OH) stress. The results showed that ·OH decreased the emulsifying activity index and emulsifying stability index but increased the creaming index and droplet size of a soybean oil-myosin emulsion (SOME). Confocal laser scanning microscopy demonstrated that ·OH caused larger and more inhomogeneous SOME droplets. l-Arginine and l-lysine effectively alleviated ·OH-induced destructive effects on the emulsifying properties of myosin. In addition, ·OH increased the extent of protein carbonylation and dityrosine formation, surface hydrophobicity, and β-sheet content, but decreased the tryptophan fluorescence intensity, solubility, total sulfhydryl, and α-helix content of myosin. Although l-lysine increased dityrosine fluorescence intensity, l-arginine and l-lysine effectively alleviated the aforementioned structural changes of myosin. Therefore, l-arginine and l-lysine could mitigate ·OH-induced structural changes of myosin, which enabled myosin to maintain its emulsifying capacity under oxidative stress.
Collapse
Affiliation(s)
- Daojing Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yinyin Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Huang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hongmei Fang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
91
|
Zhang Z, Liu P, Deng X, Guo X, Mao X, Guo X, Zhang J. Effects of hydroxyl radical oxidation on myofibrillar protein and its susceptibility to μ-calpain proteolysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
92
|
Effect of different extent of protein oxidation on the frozen storage stability of muscle protein in obscure pufferfish (Takifugu obscurus). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
93
|
Pan N, Hu Y, Li Y, Ren Y, Kong B, Xia X. Changes in the thermal stability and structure of myofibrillar protein from quick-frozen pork patties with different fat addition under freeze-thaw cycles. Meat Sci 2021; 175:108420. [PMID: 33476995 DOI: 10.1016/j.meatsci.2020.108420] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 11/28/2022]
Abstract
Changes in thermal stability and structure of myofibrillar protein from pork patties with different fat addition (0%, 5%, 10%, 15% and 20%) under freeze-thaw (F-T) cycles were discussed. The results showed that the total sulfhydryl, reactive sulfhydryl, free amino group, α-helix and β-sheet contents, fluorescence intensity (FI), and protein thermal stability (Tmax, ∆Htotal) of samples with the same fat content were significantly decreased, while the β-turn and random-coil content and the maximum fluorescence emission wavelength (λmax) were significantly increased with increasing F-T cycles (P < 0.05). These changes in samples with 20% fat at the 5th F-T cycle were obvious and were verified by the decreases in ∆Htotal (26.1%), reactive sulfhydryl (16.1%), and FI (16.8%) compared with the patties without fat. Therefore, repeated F-T cycles could decline the thermal stability of protein, destroy the protein structure of patty, and the changes were positively correlated with fat content of patty.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yifan Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanming Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
94
|
Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
95
|
Effects of in vitro oxidation on myofibrillar protein charge, aggregation, and structural characteristics. Food Chem 2020; 332:127396. [DOI: 10.1016/j.foodchem.2020.127396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
|
96
|
Study on the mechanism of KCl replacement of NaCl on the water retention of salted pork. Food Chem 2020; 332:127414. [DOI: 10.1016/j.foodchem.2020.127414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
|
97
|
Xu Y, Xu X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 20:458-500. [DOI: 10.1111/1541-4337.12665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yujuan Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| |
Collapse
|
98
|
Comparison of the in vitro protein digestibility of Protaetia brevitarsis larvae and beef loin before and after defatting. Food Chem 2020; 338:128073. [PMID: 32950872 DOI: 10.1016/j.foodchem.2020.128073] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Protein digestibility of Protaetia brevitarsis larvae before and after defatting by hexane was compared with that of beef loin in an in vitro digestion model. Larvae had higher crude protein content and 10% trichloroacetic acid (10% TCA)-soluble α-amino groups than beef. Decreases in the levels of total free sulfhydryl groups and 10% TCA-soluble α-amino groups were detected in larvae and beef after defatting (P < 0.05). Surface hydrophobicity increased after defatting in both larvae and beef, (P < 0.05) and tryptophan fluorescence intensity decreased in defatted larvae but increased in defatted beef. Levels of proteins digested into sizes under 3 and 10 kDa in larvae were higher than those in beef (P < 0.05), and defatting did not induce an effect in larvae. Therefore, in the aspect of high protein content and digestibility, larvae of P. brevitarsis can be a potential substitute of animal proteins.
Collapse
|