51
|
Neves MIL, Strieder MM, Prata AS, Silva EK, Meireles MAA. Fructans with different degrees of polymerization and their performance as carrier matrices of spray dried blue colorant. Carbohydr Polym 2021; 270:118374. [PMID: 34364618 DOI: 10.1016/j.carbpol.2021.118374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023]
Abstract
Inulin-type fructans with different degrees of polymerization (DPs) were used as wall materials for the blue colorant produced from the crosslinking between genipin and milk proteins. The impact of using fructooligosaccharides (FOS) with DP = 5 and inulins with DP ≥ 10 (GR-In) and DP ≥ 23 (HP-In) on the physical (microstructure, size, water activity, wettability, solubility, water adsorption, glass transition temperature, and color), chemical (free genipin retention and moisture), and technological (colorant power, pH stability, and thermal stability) properties of the powdered blue colorant was examined. Inulins were more efficient carriers as seen from the physical characteristics of the microparticles. FOS and GR-In promoted higher retention of free genipin than HP-In. Additionally, their lower DP influenced the rehydration proprieties as well as the color intensity and colorant power. The DP did not affect the physical stability of the colorant at different pH conditions or at high temperature. Our findings demonstrated that the DP of the fructan exhibited a strong impact on the blue intensity of the samples and also their rehydration capacity.
Collapse
Affiliation(s)
- Maria Isabel Landim Neves
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Monique Martins Strieder
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Ana Silvia Prata
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil.
| | - Maria Angela A Meireles
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| |
Collapse
|
52
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
53
|
Abcha I, Ben Haj Said L, Salmieri S, Criado P, Neffati M, Lacroix M. Optimization of extraction parameters, characterization and assessment of bioactive properties of Ziziphus lotus fruit pulp for nutraceutical potential. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Strieder MM, Landim Neves MI, Silva EK, Meireles MAA. Impact of thermosonication pretreatment on the production of plant protein-based natural blue colorants. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
55
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
56
|
Manzoor M, Singh J, Gani A, Noor N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem 2021; 362:130141. [PMID: 34091168 DOI: 10.1016/j.foodchem.2021.130141] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
Color is the prime attribute with a large impact on consumers' perception, selection, and acceptance of foods. However, the belief in bio-safety protocols, health benefits, and the nutritional importance of food colors had focused the attention of the scientific community across the globe towards natural colorants that serve to replace their synthetic toxic counterparts. Moreover, multi-disciplinary applications of greener extraction techniques and their hyphenated counterparts for selective extraction of bioactive compounds is a hot topic focusing on process intensification, waste valorization, and retention of highly stable bioactive pigments from natural sources. In this article, we have reviewed available literature to provide all possible information on various aspects of natural colorants, including their sources, photochemistry and associated biological activities explored under in-vitro and in-vivo animal and human studies. However a particular focus is given on innovative technological approaches for the effective extraction of natural colors for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Nairah Noor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| |
Collapse
|
57
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
58
|
Alves Castilho P, Bracht L, Barros L, Albuquerque BR, Dias MI, Ferreira ICFR, Comar JF, Barlati Vieira da Silva T, Peralta RM, Sá-Nakanishi ABD, Bracht A. Effects of a Myrciaria jaboticaba peel extract on starch and triglyceride absorption and the role of cyanidin-3-O-glucoside. Food Funct 2021; 12:2644-2659. [PMID: 33645616 DOI: 10.1039/d0fo02927k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to perform a parallel and comparative investigation of the effects of a Myrciaria jaboticaba (common name jabuticaba) peel extract and of its constituent cyanidin-3-O-glucoside on the overall process of starch and triglyceride intestinal absorption. The peel extract inhibited both the porcine pancreactic α-amylase and the pancreatic lipase but was 13.6 times more potent on the latter (IC50 values of 1963 and 143.9 μg mL-1, respectively). Cyanidin-3-O-glucoside did not contribute significantly to these inhibitions. The jabuticaba peel extract inhibited starch absorption in mice at doses that were compatible with its inhibitory action on the α-amylase. No inhibition of starch absorption was found with cyanidin-3-O-glucoside doses compatible with its content in the extract. The extract also inhibited triglyceride absorption, but at doses that were considerably smaller than those predicted by its strength in inhibiting the pancreatic lipase (ID50 = 3.65 mg kg-1). In this case, cyanidin-3-O-glucoside was also strongly inhibitory, with 72% inhibition at the dose of 2 mg kg-1. When oleate + glycerol were given to mice, both the peel extract and cyanidin-3-O-glucoside strongly inhibited the appearance of triglycerides in the plasma. The main mechanism seems, thus, not to be the lipase inhibition but rather the inhibition of one or more steps (e.g., transport) in the events that lead to the transformation of free fatty acids in the intestinal tract into triglycerides. Due to the low active doses, the jabuticaba peel extract presents many favourable perspectives as an inhibitor of fat absorption and cyanidin-3-O-glucoside seems to play a decisive role.
Collapse
Affiliation(s)
- Pamela Alves Castilho
- Post-Graduate Program in Food Sciences, State University of Maringa, 87020-900 Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Luzardo-Ocampo I, Ramírez-Jiménez AK, Yañez J, Mojica L, Luna-Vital DA. Technological Applications of Natural Colorants in Food Systems: A Review. Foods 2021; 10:634. [PMID: 33802794 PMCID: PMC8002548 DOI: 10.3390/foods10030634] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
Natural colorants have emerged as an alternative to their synthetic counterparts due to an existing health concern of these later. Moreover, natural-food colorants are a renewable option providing health benefits and interesting technological and sensory attributes to the food systems containing them. Several sources of natural colorants have been explored aiming to deliver the required wide color range demanded by consumers. This review aimed to compare and discuss the technological applications of the main natural-food colorants into food system in the last six years, giving additional information about their extraction process. Although natural colorants are promising choices to replace synthetic ones, optimization of processing conditions, research on new sources, and new formulations to ensure stability are required to equate their properties to their synthetic counterparts.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Santiago de Querétaro, QRO 76230, Mexico;
| | - Aurea K. Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Jimena Yañez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A. C., Camino Arenero #1227 Col. El Bajío, Zapopan, JAL 45019, Mexico;
| | - Diego A. Luna-Vital
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| |
Collapse
|
60
|
Wu J, Zhang J, Yu X, Shu Y, Zhang S, Zhang Y. Extraction optimization by using response surface methodology and purification of yellow pigment from Gardenia jasminoides var. radicans Makikno. Food Sci Nutr 2021; 9:822-832. [PMID: 33598166 PMCID: PMC7866593 DOI: 10.1002/fsn3.2046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022] Open
Abstract
Gardenia jasminoides var. radicans Makikno contains rich gardenia yellow pigment (GYP). In this study, the process of pigment extraction was optimized based on a Box-Behnken design (BBD) and response surface methodology (RSM). The absorbance and antioxidant activity (AA) were considered as responses. The result showed that the optimal extraction conditions were ethanol concentration 65.10%, liquid/solid ratio 10:1 ml/g, extraction time 59.85 min, and extraction temperature 60.04℃ for the maximal response values of absorbance (0.79) and AA (91.30%), respectively. Crude GYP was purified by the 13 different resins. The result showed that BJ-7514 was suitable for purifying GYP with the absorption ratio of 95.4%. Moreover, the 80% of ethanol eluent is applicable on the BJ-7514 with the desorption ratio of 91.93%. The major component of GYP (Crocin-3) was isolated and identified from the purified GYP.
Collapse
Affiliation(s)
- Jun Wu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Jiangtao Zhang
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Xin Yu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Yue Shu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Siyu Zhang
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Yinglao Zhang
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
61
|
Optimization of a Novel Method Based on Ultrasound-Assisted Extraction for the Quantification of Anthocyanins and Total Phenolic Compounds in Blueberry Samples ( Vaccinium corymbosum L.). Foods 2020; 9:foods9121763. [PMID: 33260750 PMCID: PMC7759891 DOI: 10.3390/foods9121763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, consumers' preference for fruits such as blueberry has increased noticeably. This fact is probably related to their bioactive components such as anthocyanins, phenolic compounds, vitamins, minerals, and tannins that have been found in blueberries by the latest research studies. Both total anthocyanins (TA) and total phenolic compounds (TPC) are known for their multiple beneficial effects on our health, due to their anti-inflammatory, anti-oxidant, and anti-cancer properties. This is the reason why the development of new methodologies for the quality control analysis of raw materials or derived products from blueberry has a great relevance. Two ultrasound-assisted extraction methods (UAE) have been optimized for the quantification of TA and TPC in blueberry samples. The six variables to be optimized were: solvent composition, temperature, amplitude, cycle, extraction solvent pH, and sample/solvent ratio using response surface methodology. The optimized methods have proven to be suitable for the extraction of the TPC and TA with good precision (repeatability and intermediate precision) (coefficient of variation (CV) < 5%) and potentially for application in commercial samples. This fact, together with the multiple advantages of UAE, makes these methods a good alternative to be used in quality control analysis by both industries and laboratories.
Collapse
|
62
|
Xu Y, Li X, Zhang W, Jiang H, Pu Y, Cao J, Jiang W. Zirconium(Ⅳ)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS. Food Chem 2020; 344:128650. [PMID: 33229159 DOI: 10.1016/j.foodchem.2020.128650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022]
Abstract
Zirconium(Ⅳ)-based metal-organic framework (MOF)-UiO-66-NH2 was fabricated to adsorb the imidacloprid and thiamethoxam in fruit samples before analysis using UPLC-MS/MS. The UiO-66-NH2 was confirmed by SEM, FTIR, and XRD. Key experimental parameters were investigated by response surface methodology (RSM). The desirability recovery of imidacloprid was 94.52% under optimum conditions (mount of adsorbent = 52.48 mg, volume of eluent = 5.18 mL, pH = 9, extraction time = 15 min). The desirability recovery of thiamethoxam was 93.57% under optimum conditions (mount of adsorbent = 50.58 mg, volume of eluent = 2.6 mL, pH = 5.65, extraction time = 11.94 min). Under the optimal conditions, the actual recovery of imidacloprid and thiamethoxam was 92.39% and 94.37%, respectively. Besides, the method was applied successfully to detect imidacloprid and thiamethoxam in different fruit samples. The results demonstrated that the UiO-66-NH2 is an excellent adsorbent for the extraction imidacloprid and thiamethoxam from fruit samples.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
63
|
Echegaray N, Munekata PES, Gullón P, Dzuvor CKO, Gullón B, Kubi F, Lorenzo JM. Recent advances in food products fortification with anthocyanins. Crit Rev Food Sci Nutr 2020; 62:1553-1567. [PMID: 33198501 DOI: 10.1080/10408398.2020.1844141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anthocyanins are polyphenolic compounds belonging to the group of flavonoids in charge of providing red, purple, and blue colourations to different parts of trees and plants, such as leaves, flowers, fruits, roots, and stems. These substances have potential health benefits due to characteristics such as antioxidant and anti-inflammatory properties, which could be leveraged in the food industry. However, the use and handling of anthocyanins are conditioned due to the low stability of these molecules. For this reason, the application of adequate extraction, purification and stabilization techniques is required for its subsequent management. In this regards, green extraction methods and novel stabilization techniques are of particular interest in the utilization of these biocompounds. This review provides in-depth information about the extraction, purification, and stabilization of anthocyanins from different plant sources. Additionally, this work highlights the potential use of anthocyanins in the food industry for the formulation of different fortified foods and beverages, which could have beneficial health effects. Green technologies, are a promising tool to recover extracts rich in anthocyanins from different vegetable matrices, including by-products. The extracts obtained can be easily used in the fortification of baked foods, dairy products, and different beverages.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Francis Kubi
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
64
|
Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and In Vitro Bioactivity. Processes (Basel) 2020. [DOI: 10.3390/pr8111447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heat (HAE)- and ultrasound (UAE)-assisted extraction methods were implemented to recover anthocyanins from red raspberry. Processing time, ethanol concentration, and temperature or ultrasonic power were the independent variables combined in five-level rotatable central composite designs coupled with response surface methodology (RSM) for processes optimization. The extraction yield and levels of cyanidin-3-O-sophoroside (C3S) and cyanidin-3-O-glucoside (C3G) were monitored by gravimetric and HPLC-DAD-ESI/MSn methods, respectively, and used as response criteria. The constructed theoretical models were successfully fitted to the experimental data and used to determine the optimal extraction conditions. When maximizing all responses simultaneously, HAE originated slightly higher response values (61% extract weight and 8.7 mg anthocyanins/g extract) but needed 76 min processing at 38 °C, with 21% ethanol (v/v), while the UAE process required 16 min sonication at 466 W, using 38% ethanol (v/v). The predictive models were experimentally validated, and the purple-red extracts obtained under optimal condition showed antioxidant activity through lipid peroxidation and oxidative hemolysis inhibition, and antibacterial effects against food-related microorganisms, such as Escherichia coli and Enterococcus faecalis. These results highlight the potential of red raspberry extracts as natural food colorants with bioactive effects and could be exploited by industries interested in the production of anthocyanin-based products.
Collapse
|
65
|
Anthocyanin-rich extracts from purple and red potatoes as natural colourants: Bioactive properties, application in a soft drink formulation and sensory analysis. Food Chem 2020; 342:128526. [PMID: 33223300 DOI: 10.1016/j.foodchem.2020.128526] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Aqueous extracts from seven coloured potato varieties (three red-fleshed, three-purple fleshed, and one marble-fleshed) were studied for their anthocyanin content, in vitro biological activities, colouring properties and their potential application in the food industry. Acylated glycosides or pelargonidin and petunidin aglycones were identified as the main anthocyanin forms in the red and purple varieties, respectively. The total anthocyanin content among varieties ranged from 478.3 to 886.2 mg/100 g extract. All the extracts presented in vitro antioxidant, antibacterial and antifungal activities, whereas no toxic effects were detected. Finally, two selected extracts were tested as colourants in a soft drink formulation and presented suitable sensory profiles as well as high colour stability during a 30-day shelf-life when compared with the commercial colourant E163. Therefore, the tested extracts could be used as natural food colourants and considered for substituting the existing synthetic colouring agents.
Collapse
|
66
|
Ma Y, Li S, Ji T, Wu W, Sameen DE, Ahmed S, Qin W, Dai J, Liu Y. Development and optimization of dynamic gelatin/chitosan nanoparticles incorporated with blueberry anthocyanins for milk freshness monitoring. Carbohydr Polym 2020; 247:116738. [DOI: 10.1016/j.carbpol.2020.116738] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|