51
|
|
52
|
Tong H, Cao C, Du Y, Liu Y, Huang W. Ultrasonic‐assisted phosphate curing: a novel approach to improve curing rate and chicken meat quality. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Changwei Cao
- College of Food Science Sichuan Agricultural University Ya’ an Sichuan 625014 China
| | - Yanli Du
- College of Animal Science and Technology Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Yong Liu
- College of Animal Science and Technology Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Wei Huang
- Kunming University Kunming Yunnan 650214 China
| |
Collapse
|
53
|
Physical properties and conformational changes of shrimp surimi from Litopenaeus vannamei during cold gelation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
54
|
Wei H, Luo K, Fu R, Lin X, Feng A. Impact of the magnetic field-assisted freezing on the moisture content, water migration degree, microstructure, fractal dimension, and the quality of the frozen tilapia. Food Sci Nutr 2022; 10:122-132. [PMID: 35035915 PMCID: PMC8751430 DOI: 10.1002/fsn3.2653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
In this study, we determined the effect of a magnetic field applied during refrigeration in improving the quality of frozen tilapia. Alternating magnetic fields of 10 G, 20 G, 30 G, 40 G, and 50 G were applied during a low-temperature freezing treatment on the back, abdomen, and tail of tilapia. The control group was set at 0 G. A correlation analysis for the fish films after treating with different magnetic field strengths was carried out. The results showed that when the magnetic field was applied to assist freezing, the frozen quality of the tilapia was significantly improved, and the water separation and residual damage were reduced. The felled muscle tissue decreased, the fractal dimension value increased, the hardness decreased, and the elasticity increased. However, the impact of the magnetic field on the quality of the frozen tilapia did not change with an increase in the magnetic field strength. The effect on the back samples was more prominent when the fish were exposed to the magnetic field strength of 40 or 50 G. A magnetic field strength of 50 G was the most effective for the abdominal and tail samples. However, no significant difference was observed in the groups exposed to 10 and 20 G of magnetic fields.
Collapse
Affiliation(s)
- Heyun Wei
- School of Food Science and EngineeringHainan UniversityHaikouChina
| | - Kaixuan Luo
- School of Food Science and EngineeringHainan UniversityHaikouChina
| | - Renhao Fu
- School of Food Science and EngineeringHainan UniversityHaikouChina
| | - Xiangdong Lin
- School of Food Science and EngineeringHainan UniversityHaikouChina
| | - Aiguo Feng
- School of Food Science and EngineeringHainan UniversityHaikouChina
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Marine Food Deep ProcessingDalian Polytechnic UniversityDalianChina
| |
Collapse
|
55
|
Yang X, Feng J, Zhu Q, Hong R, Li L. A Relation between Exopolysaccharide from Lactic Acid Bacteria and Properties of Fermentation Induced Soybean Protein Gels. Polymers (Basel) 2021; 14:polym14010090. [PMID: 35012112 PMCID: PMC8747248 DOI: 10.3390/polym14010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Exopolysaccharide (EPS) producing lactic acid bacteria (LAB) is considered to be an effective texture improver. The effect of LAB strains (different EPS production capacity) on physicochemical properties (texture profile, water distribution, rheological properties, and microstructure), protein conformation, and chemical forces of soybean protein gel was investigated. Correlations between EPS yield and gel properties were established. Large masses of EPS were isolated from L. casei fermentation gel (L. casei-G, 677.01 ± 19.82 mg/kg). Gel with the highest hardness (319.74 ± 9.98 g) and water holding capacity (WHC, 87.74 ± 2.00%) was also formed with L. casei. The conversion of β-sheet to α-helix, the increased hydrophobic interaction and ionic bond helped to form an ordered gel network. The yield was positively correlated with hardness, WHC, A22, viscoelasticity, and viscosity, but negatively correlated with A23 (p < 0.05). The macromolecular properties of EPS (especially the yield) and its incompatibility with proteins could be explained as the main reason for improving gel properties. In conclusion, the EPS producing LAB, especially L. casei used in our study, is the best ordinary coagulate replacement in soybean-based products.
Collapse
Affiliation(s)
| | | | | | - Rui Hong
- Correspondence: (R.H.); (L.L.); Tel.: +86(0)-451-55190477 (R.H.); Fax: +86(0)-451-55190577 (R.H.)
| | - Liang Li
- Correspondence: (R.H.); (L.L.); Tel.: +86(0)-451-55190477 (R.H.); Fax: +86(0)-451-55190577 (R.H.)
| |
Collapse
|
56
|
Dai Y, Zhao J, Gao J, Deng Q, Wan C, Li B, Zhou B. Heat- and cold-induced gels of desalted duck egg white/gelatin mixed system: Study on rheological and gel properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Zhou Z, Xu Q, Chen L, Chen N, Gao H, Sun Q, Zeng W. Interaction and action mechanism of quercetin and myofibrillar protein and its effects on the quality of cured meat. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zhi‐Qiang Zhou
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Qian‐Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Lin Chen
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Hao‐Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Qun Sun
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu PR China
| | - Wei‐Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu PR China
| |
Collapse
|
58
|
Zhao X, Lan W, Zhai Y, Xie J. Multi-frequency ultrasound:A potential method to improve the effects of surface decontamination and structural characteristics on large yellow croaker (Pseudosciaena crocea) during refrigerated storage. ULTRASONICS SONOCHEMISTRY 2021; 79:105787. [PMID: 34634550 PMCID: PMC8515294 DOI: 10.1016/j.ultsonch.2021.105787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 05/04/2023]
Abstract
The effects of multi-frequency ultrasound on surface decontamination and structural characteristics of large yellow croaker (Pseudosciaena crocea) during refrigerated storage were evaluated. The results of total viable counts (TVCs) and psychrophilic bacteria counts (PBCs) demonstrated that multi-frequency ultrasound retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the increase of ultrasound frequencies. However, compared with triple-frequency ultrasound (TUS, 20/28/40 kHz) treatment, dual-frequency ultrasound (DUS, 20/28 kHz) treatment had higher water-holding capacity (WHC) and immobilized water content, better texture characteristics, lower pH and total volatile basic nitrogen (TVB-N). Through the results of myofibrillar fragmentation index (MFI), intrinsic fluorescence intensity (IFI) and atomic force microscope (AFM), multi-frequency ultrasound could effectively stabilize the myofibrillar protein structure of refrigerated large yellow croaker, which could maintain better texture characteristics. The effects of DUS were the most significant. Therefore, multi-frequency ultrasound treatment could inhibit the growth of microorganisms and improve the structural characteristics of large yellow croaker during refrigerated storage.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Yuting Zhai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
59
|
Wu D, Guo J, Wang X, Yang K, Wang L, Ma J, Zhou Y, Sun W. The direct current magnetic field improved the water retention of low-salt myofibrillar protein gel under low temperature condition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
60
|
Feng X, Wu D, Yang K, Wang L, Wang X, Ma J, Zhang Y, Wang C, Zhou Y, Sun W. Effect of sarcoplasmic proteins oxidation on the gel properties of myofibrillar proteins from pork muscles. J Food Sci 2021; 86:1835-1844. [PMID: 33856047 DOI: 10.1111/1750-3841.15687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
This study investigated the influence of sarcoplasmic proteins (SPs) treated by the oxidation system (0.1 mmol/L FeCl3 , 0.1 mmol/L ascorbic acid, and 0, 1, 5, 10 mmol/L H2 O2 ) on the properties of pork myofibrillar proteins (MPs) gel. After oxidation treatment, the SPs showed an increased in carbonyl content and a decreased in total sulfhydryl content, coupled with the cross-linking of protein components by disulfide bonds and covalent bonds. The MPs gel with SPs oxidized at 1 mmol/L H2 O2 exhibited the maximal strength while the minimal water holding capacity (WHC). The WHC of MPs gel was significantly decreased with increasing SPs oxidation, leading to the increase of free water and the decrease of immobilized water in the gel system. The microstructures of MPs gels with moderately (1 mmol/L H2 O2 ) oxidized SPs showed a more compact and smaller pore gel network than MPs alone, suggesting adding oxidized SPs can expel water trapped in the gel. Furthermore, the environmental polarity of aliphatic C-H groups increased with SPs oxidation.
Collapse
Affiliation(s)
- Xiaolong Feng
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Xian Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Caili Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Yuanhua Zhou
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
61
|
Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. Food Chem 2021; 355:129650. [PMID: 33799245 DOI: 10.1016/j.foodchem.2021.129650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022]
Abstract
In this study, structural characteristics and formation mechanism of Mesona chinensis polysaccharide (MCP)-whey protein isolate (WPI) gels including group and molecular changes, intermolecular forces, crystallinity, and moisture migration were investigated under pH shifting conditions. Results showed that MCP and WPI formed a stable gel at pH 10. The free sulfhydryl groups and surface hydrophobicity of the MCP-WPI gels increased with the increasing pH. Hydrophobic and hydrogen bond interactions were the main molecular forces involved in the MCP-WPI gels, and electrostatic interactions and disulfide bonds played a complementary role. The pH conditions evidently influenced the secondary conformational structure of MCP-WPI gels. Molecular weight and X-ray diffraction (XRD) analysis indicated the formation of a hypocrystalline complex with molecular interaction. In addition, low-field magnetometry (LF-NMR) results showed that the T2 values decreased with increasing pH, indicating that water and gel matrix had the highest interactions at pH 10.
Collapse
|
62
|
Wang X, Wang L, Yang K, Wu D, Ma J, Wang S, Zhang Y, Sun W. Radio frequency heating improves water retention of pork myofibrillar protein gel: An analysis from water distribution and structure. Food Chem 2021; 350:129265. [PMID: 33610837 DOI: 10.1016/j.foodchem.2021.129265] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/16/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
This study was to explore effects of hot air assisted or not assisted radio frequency (RF, 27.12 MHz, 1.4 kW) heating with different electrode gaps (100 mm, 120 mm, and 140 mm) on the water-holding capacity (WHC) of myofibrillar protein (MP) gel and to understand the underlying mechanism through chemical forces, water distribution, and structure. The results showed that the MP gels heated by RF (100 mm) had the highest WHC and uniform gel network structure. As for RF with 100 mm electrode gap, the increased ionic and hydrogen bonds might be conducive to the WHC compared to water bath heating, which was verified by Low-field nuclear magnetic resonance results that the free water converted into the immobilized water. Raman spectroscopy results revealed that RF (100 mm) induced the self-assembly of β-sheet to α-helix, which conduced to the stable and ordered gel network structure.
Collapse
Affiliation(s)
- Xian Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| |
Collapse
|
63
|
Li F, Du X, Wang B, Pan N, Xia X, Bao Y. Inhibiting effect of ice structuring protein on the decreased gelling properties of protein from quick-frozen pork patty subjected to frozen storage. Food Chem 2021; 353:129104. [PMID: 33730666 DOI: 10.1016/j.foodchem.2021.129104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The effect of ice structuring protein (ISP) on the gelling properties of myofibrillar protein from quick-frozen pork patty during frozen storage was investigated by determining and comparing protein solubility, turbidity and gel properties. Protein solubility was increased by 10.23% and turbidity was decreased after ISP treated. The gel whiteness and strength of myofibrillar protein from patty with ISP were 8.38% and 13.70% higher than that of the control after frozen for 180 days. And the addition of ISP could weaken the influence of frozen storage on water mobility and reduce the water loss. Furthermore, ISP retrained the decrease in the maximum elastic (G') value and loss factor (tan δ) value of samples. Through observing by scanning electron microscope (SEM), ISP retarded the destruction of gel microstructure and maintained the relatively complete tissue of gel. These findings confirmed the importance of ISP in myofibrillar protein gel quality assurance of pork patty during frozen storage.
Collapse
Affiliation(s)
- Fangfei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
64
|
Zhang Q, Gu L, Su Y, Chang C, Yang Y, Li J. Development of soy protein isolate/κ-carrageenan composite hydrogels as a delivery system for hydrophilic compounds: Monascus yellow. Int J Biol Macromol 2021; 172:281-288. [PMID: 33453255 DOI: 10.1016/j.ijbiomac.2021.01.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to develop soy protein isolate (SPI) and κ-carrageenan (KC) composite hydrogels as a delivery system for hydrophilic compounds. The pigment of monascus yellow was used as a model. A systematic study was performed to characterize the rheological, textural, microstructural properties and in vitro digestion release profile of monascus yellow of the composite gels. The results of power law modeling, electrophoresis patterns and fourier transform infrared spectroscopy (FTIR) confirmed that non-covalent interactions were involved in the formation of SPI/KC composite hydrogels. Compared to pure κ-carrageenan hydrogels, the incorporation of SPI could promote the formation of tougher, more uniform and compact composite gels with sustained-release property. In addition, the release behaviors of monascus yellow entrapped in the hydrogel network can be well described by the Ritger-Peppas mathematical model. Overall, our study provided a promising strategy to enhance the sustained release performance of hydrogels in digestive conditions.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
65
|
Yang K, Wang H, Huang J, Wu D, Zhao M, Ma J, Sun W. Effects of direct current magnetic field treatment time on the properties of pork myofibrillar protein. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Yang
- College of Life Science Yangtze University Jingzhou Hubei434023China
| | - Huiling Wang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan Hubei430023China
| | - Jin Huang
- College of Life Science Yangtze University Jingzhou Hubei434023China
| | - Di Wu
- College of Life Science Yangtze University Jingzhou Hubei434023China
| | - Manman Zhao
- College of Life Science Yangtze University Jingzhou Hubei434023China
| | - Jing Ma
- College of Life Science Yangtze University Jingzhou Hubei434023China
- Jingchu Food Research and Development Center Yangtze University Jingzhou Hubei434025China
| | - Weiqing Sun
- College of Life Science Yangtze University Jingzhou Hubei434023China
- Jingchu Food Research and Development Center Yangtze University Jingzhou Hubei434025China
| |
Collapse
|