51
|
Wang H, Pei Z, Xue C, Cao J, Shen X, Li C. Comparative Study on the Characterization of Myofibrillar Proteins from Tilapia, Golden Pompano and Skipjack Tuna. Foods 2022; 11:foods11121705. [PMID: 35741902 PMCID: PMC9222683 DOI: 10.3390/foods11121705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, the physicochemical properties, functional properties and N-glycoproteome of tilapia myofibrillar protein (TMP), golden pompano myofibrillar protein (GPMP) and skipjack tuna myofibrillar protein (STMP) were assessed. The microstructures and protein compositions of the three MPs were similar. TMP and GPMP had higher solubility, sulfhydryl content and endogenous fluorescence intensity, lower surface hydrophobicity and β-sheet contents than STMP. The results showed that the protein structures of TMP and GPMP were more folded and stable. Due to its low solubility and high surface hydrophobicity, STMP had low emulsifying activity and high foaming activity. By N-glycoproteomics analysis, 23, 85 and 22 glycoproteins that contained 28, 129 and 35 N-glycosylation sites, were identified in TMP, GPMP and STMP, respectively. GPMP had more N-glycoproteins and N-glycosylation sites than STMP, which was possibly the reason for GPMP’s higher solubility and EAI. These results provide useful information for the effective utilization of various fish products.
Collapse
Affiliation(s)
- Huibo Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Zhisheng Pei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel./Fax: +86-0898-66256495
| |
Collapse
|
52
|
Dominating roles of protein conformation and water migration in fish muscle quality: The effect of freshness and heating process. Food Chem 2022; 388:132881. [PMID: 35447577 DOI: 10.1016/j.foodchem.2022.132881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
The quality characteristics of fish products are a key factor influencing consumer acceptance and preference. This study was aimed to investigate the relationship among quality characteristics, protein structural changes and water migration of mandarin fish with different freshness during heating process. The results showed that the protein structure tended to unfold and more loosen in low freshness fish muscle (4-5 d storage) during heating, leading to an obvious decrease in hydrogen bonds, promoting a reduction of water holding capacity in fish muscle, thus resulting in an increase of T23 and a decrease of AW, which in turn affected the hardness, stress, and springiness of fish muscle. The protein conformation and water migration could explain the textural differences after heating of different freshness mandarin fish.
Collapse
|
53
|
Liu J, Jiang H, Zhang M, Gong P, Yang M, Zhang T, Liu X. Ions-regulated aggregation kinetics for egg white protein: A promising formulation with controlled gelation and rheological properties. Int J Biol Macromol 2022; 200:263-272. [PMID: 35007631 DOI: 10.1016/j.ijbiomac.2021.12.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022]
Abstract
This study aims to evaluate the structure of ions-regulated gelation of egg white protein (EWP) via aggregation kinetics model, which was built by monitoring turbidity. Results showed that compared with NaCl and KCl, the addition of Na2SO4 increased free sulfhydryl content, surface hydrophobicity and particle size of EWP significantly, while weakened the order of secondary structure. Hence, strengthened gel network structure was observed with higher porosity, which improved the texture profiles and rheological properties of EWP gels. Based on these phenomena above, the relationship between aggregation behavior and gelling properties with ions was further investigated by aggregation kinetics model and principal component analysis. Because of the enhancement of protein interactions, the aggregation growth rate with Na2SO4 was much faster than the samples with NaCl, which reflected over-aggregation due to the accelerated nucleation process and resulted in firmed gel network structure.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hongyu Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ping Gong
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
54
|
Insight into the mechanism of myosin-fibrin gelation induced by non-disulfide covalent cross-linking. Food Res Int 2022; 156:111168. [DOI: 10.1016/j.foodres.2022.111168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022]
|
55
|
Emulsion Surimi Gel with Tunable Gel Properties and Improved Thermal Stability by Modulating Oil Types and Emulsification Degree. Foods 2022; 11:foods11020179. [PMID: 35053911 PMCID: PMC8774618 DOI: 10.3390/foods11020179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
High resistance to heating treatments is a prerequisite for ready-to-eat (RTE) surimi products. In this study, emulsion-formulated surimi gels were prepared, and the effects of oil types and emulsification degrees on the thermal stability of surimi gel were investigated. The results showed the gel properties of surimi gels were modulated by oil types and emulsification degrees. In detail, the rising pre-emulsification ratio caused the increase of the emulsifying activity index (EAI) and decrease of emulsifying stability index (ESI) for both emulsions. The larger droplet sizes of perilla seed oil than soybean oil may be responsible for their emulsifying stability difference. The gel strength, water retention, dynamic modulus and texture properties of both kinds of surimi gels displayed a firstly increased and then decreased tendency with the rising pre-emulsification ratios. The peak values were obtained as perilla seed oil emulsion with emulsification ratio of 20% group (P1) and soybean oil emulsion with emulsification ratio of 40% group (S2), respectively. Anyway, all emulsion gels showed higher thermal stability than the control group regardless of oil types. Similar curves were also obtained for the changes of hydrogen bond, ionic bond and hydrophobic interactions. Overall, perilla seed oil emulsion with emulsification ratio of 20% (P1 group) contributed to the improved thermal stability of surimi gels.
Collapse
|
56
|
García-Armenta E, Gutiérrez-López GF. Fractal Microstructure of Foods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09302-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
57
|
Du J, Zhou C, Xia Q, Wang Y, Geng F, He J, Sun Y, Pan D, Cao J. The effect of fibrin on rheological behavior, gelling properties and microstructure of myofibrillar proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Yang X, Feng J, Zhu Q, Hong R, Li L. A Relation between Exopolysaccharide from Lactic Acid Bacteria and Properties of Fermentation Induced Soybean Protein Gels. Polymers (Basel) 2021; 14:polym14010090. [PMID: 35012112 PMCID: PMC8747248 DOI: 10.3390/polym14010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Exopolysaccharide (EPS) producing lactic acid bacteria (LAB) is considered to be an effective texture improver. The effect of LAB strains (different EPS production capacity) on physicochemical properties (texture profile, water distribution, rheological properties, and microstructure), protein conformation, and chemical forces of soybean protein gel was investigated. Correlations between EPS yield and gel properties were established. Large masses of EPS were isolated from L. casei fermentation gel (L. casei-G, 677.01 ± 19.82 mg/kg). Gel with the highest hardness (319.74 ± 9.98 g) and water holding capacity (WHC, 87.74 ± 2.00%) was also formed with L. casei. The conversion of β-sheet to α-helix, the increased hydrophobic interaction and ionic bond helped to form an ordered gel network. The yield was positively correlated with hardness, WHC, A22, viscoelasticity, and viscosity, but negatively correlated with A23 (p < 0.05). The macromolecular properties of EPS (especially the yield) and its incompatibility with proteins could be explained as the main reason for improving gel properties. In conclusion, the EPS producing LAB, especially L. casei used in our study, is the best ordinary coagulate replacement in soybean-based products.
Collapse
Affiliation(s)
| | | | | | - Rui Hong
- Correspondence: (R.H.); (L.L.); Tel.: +86(0)-451-55190477 (R.H.); Fax: +86(0)-451-55190577 (R.H.)
| | - Liang Li
- Correspondence: (R.H.); (L.L.); Tel.: +86(0)-451-55190477 (R.H.); Fax: +86(0)-451-55190577 (R.H.)
| |
Collapse
|
59
|
Shi M, Wang F, Ji X, Yan Y, Liu Y. Effects of plasma‐activated water and heat moisture treatment on the properties of wheat flour and dough. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miaomiao Shi
- College of Food and Bioengineering Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Fei Wang
- College of Food and Bioengineering Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou University of Light Industry Zhengzhou 450002 China
- Lanzhou Quality Supervision Center Limited China Grain Reserves Group Ltd. Company Lanzhou 730080 China
| | - Xiaolong Ji
- College of Food and Bioengineering Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yizhe Yan
- College of Food and Bioengineering Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yanqi Liu
- College of Food and Bioengineering Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou University of Light Industry Zhengzhou 450002 China
| |
Collapse
|
60
|
Jiao X, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Redox Proteomic Analysis Reveals Microwave-Induced Oxidation Modifications of Myofibrillar Proteins from Silver Carp ( Hypophthalmichthys molitrix). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9706-9715. [PMID: 34342990 DOI: 10.1021/acs.jafc.1c03045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To provide an insight into the oxidation behavior of cysteines in myofibrillar proteins (MPs) during microwave heating (MW), a quantitative redox proteomic analysis based on the isobaric iodoacetyl tandem mass tag technology was applied in this study. MPs from silver carp muscles were subjected to MW and water bath heating (WB) with the same time-temperature profiles to eliminate the thermal differences caused by an uneven energy input. Altogether, 422 proteins were found to be differentially expressed after thermal treatments as compared to that with no heat treatment. However, MW triggered a larger number of proteins and cysteine sites for oxidation. Myosin heavy chain, myosin-binding protein C, nebulin, α-actinin-3-like, and titin were found to be highly susceptible to oxidation under microwave irradiation. Notably, MW caused such modifications at cysteine site 9 in the head of myosin, revealing the enhancement mechanism of MP gelation by excess cysteine cross-linking during microwave processing. Furthermore, Gene Ontology and functional enrichment analyses suggested that the two thermal treatments resulted in some differences in ion binding, muscle cell development, and protein-containing complex assembly. Overall, this study is the first to report the redox proteomic changes caused by MW and WB treatments, thus providing a further understanding of the microwave-induced oxidative modifications of MPs.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Fujian Anjoy Food Share Co. Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
61
|
Ye T, Chen X, Chen Z, Liu R, Zhang P, Yu Q, Lu J. Loss of immobilized water and intense protein aggregation responsible for quality deterioration of ready to eat firm tofu. J Texture Stud 2021; 52:492-500. [PMID: 34101194 DOI: 10.1111/jtxs.12614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
The influence of high-temperature treatment (100-120°C, 15 min) on the texture, color, and water-holding capacity of tofu gels was investigated. As the temperature increasing, the hardness and chewiness as well as the values of redness a and yellowness b increased gradually, while the water content and the lightness L value reduced progressively, and these variations were more pronounced at 115 or 120°C. Low field nuclear magnetic resonance showed that the loss of T22 water led to the decrease of the water content. Scanning electron microscope revealed that the micropore in gels decreased after heating, and almost entirely disappeared at 120°C. Further analysis by SDS-PAGE indicated the soy protein aggregation formed via disulfide linkage was observed in the thermal treated tofu gels, and nondisulfide linkage might also be occurred as temperature reached 110°C or higher. The quality deterioration may be attributed to immobilized water loss combined with the protein aggregation.
Collapse
Affiliation(s)
- Tao Ye
- College of Bioengineering, Huainan Normal University, Huainan, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhina Chen
- College of Bioengineering, Huainan Normal University, Huainan, China
| | - Rui Liu
- College of Bioengineering, Huainan Normal University, Huainan, China
| | - Peipei Zhang
- College of Bioengineering, Huainan Normal University, Huainan, China
| | - Qi Yu
- College of Bioengineering, Huainan Normal University, Huainan, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
62
|
Chen B, Zhou K, Xie Y, Nie W, Li P, Zhou H, Xu B. Glutathione-mediated formation of disulfide bonds modulates the properties of myofibrillar protein gels at different temperatures. Food Chem 2021; 364:130356. [PMID: 34147870 DOI: 10.1016/j.foodchem.2021.130356] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The present study illustrated modulation of protein aggregation by affecting disulfide/sulfhydryl exchange reactions by adding different concentrations of free thiol represented by reduced-glutathione (GSH) for modulating myofibrillar protein (MP) gel properties at 75 °C or 95 °C. Gel strength and rheological results showed the effects of GSH were dependent on the concentrations (5, 10, 20, 40, and 80 g/kg) and heating temperatures. SEM results showed that the addition of GSH improved the gel microstructure at 95 °C. AFM and DLS results indicated that protein aggregation was also inhibited. At 75 °C, the addition of GSH influenced both MP aggregation and gel properties. Low concentrations (5, 10 g/kg) of GSH promoted aggregation, whereas high concentrations (20, 40, and 80 g/kg) of GSH inhibited this. By analyzing the protein structure and cross-linking pattern changes of MP and MP/GSH composites, a pathway involving GSH influencing MP gel properties was determined.
Collapse
Affiliation(s)
- Bo Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Anhui QiangWang Flavouring Food CO., LTD, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei 230601, China
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
63
|
Zhang Y, Yuan JL, Fan C, Yan P, Kang X. Fabrication and characteristics of porcine plasma protein cold-set gel: Influence of the aggregates produced by glucono-δ-lactone acidification on microbial transglutaminase catalysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
64
|
Zhu M, Zhang J, Peng Z, Kang Z, Ma H, Zhao S, He H, Xu B. Fluctuated low temperature combined with high-humidity thawing to retain the physicochemical properties and structure of myofibrillar proteins from porcine longissimus dorsi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Wang Q, Jiao X, Yan B, Meng L, Cao H, Huang J, Zhao J, Zhang H, Chen W, Fan D. Inhibitory effect of microwave heating on cathepsin l-induced degradation of myofibrillar protein gel. Food Chem 2021; 357:129745. [PMID: 33894571 DOI: 10.1016/j.foodchem.2021.129745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
This work was aimed to compare the effect of microwave (MW) heating on the cathepsin L (Cat L)-induced degradation of myofibrillar protein (MP) gels with that of water bath (WB) heating. First, Cat L from silver carp was purified and determined to be 45 kDa. The gel strength of the MW-heated MP gels were significantly higher than those of the WB-heated when Cat L was added (P < 0.05). The gel electrophoresis pattern and scanning electron microscopy analysis indicated that MW heating inhibited the Cat l-induced hydrolysis of MP gels. In addition, the number of sulfhydryl groups and surface hydrophobicity of MW-heated gels were lower than those of WB-heated gels when Cat L was added. These results indicated that MW heating could effectively weaken the degradation of Cat L on MP gels by manipulating disulfide bonds and hydrophobic amino acids, resulting in good gel properties and a compact protein network.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linglu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongwei Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China; Fujian Anjoyfood Share Co. Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
66
|
Wan H, Li H, Lei Y, Xie P, Zhang S, Wang H, Liu X, Sun B. Influence of stewing conditions on tenderness and protein structure in beef. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hongbing Wan
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Haipeng Li
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Yuanhua Lei
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Peng Xie
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Songshan Zhang
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Huan Wang
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Xuan Liu
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Baozhong Sun
- Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
67
|
Yu H, Wu W, Lin X, Feng Y. Polysaccharide-Based Nanomaterials for Ocular Drug Delivery: A Perspective. Front Bioeng Biotechnol 2020; 8:601246. [PMID: 33363130 PMCID: PMC7758246 DOI: 10.3389/fbioe.2020.601246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Ocular drug delivery is one of the most challenging issues in ophthalmology because of the complex physiological structure of the eye. Polysaccharide-based nanomaterials have been extensively investigated in recent years as ideal carriers for enhancing the bioavailability of drugs in the ocular system because of their biocompatibility and drug solubilization. From this perspective, we discuss the structural instability of polysaccharides and its impact on the synthesis process; examine the potential for developing bioactive polysaccharide-based ocular drug nanocarriers; propose four strategies for designing novel drug delivery nanomaterials; and suggest reviewing the behavior of nanomaterials in ocular tissues.
Collapse
Affiliation(s)
- Haozhe Yu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yun Feng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
68
|
Chen B, Guo J, Xie Y, Zhou K, Li P, Xu B. Modulating the aggregation of myofibrillar protein to alleviate the textural deterioration of protein gels at high temperature: The effect of hydrophobic interactions. Food Chem 2020; 341:128274. [PMID: 33038801 DOI: 10.1016/j.foodchem.2020.128274] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 01/26/2023]
Abstract
In this study, the strategy of utilizing a model hydrophobic molecule, octenyl succinic anhydride (OSA), to inhibit over-aggregation of MP during heating, aiming to alleviate high temperature-induced textural deterioration of MP gels, was proposed, and a series of experiments were conducted to verify the effectiveness. The results showed that the effect was positively dependent on the concentrations of OSA. The addition of OSA at a concentration of 4 g/kg to 24 g/kg delayed the gelation temperature of MP, as confirmed by the DSC results, and inhibited the aggregation of MP through hydrophobic interactions between OSA and MP, as revealed by fluorescence and FTIR spectroscopy. Furthermore, when the concentration of OSA increased from 4 g/kg to 12 g/kg, the controlled aggregation of MP improved the gel properties of MP formed at high temperature, but when the concentration reached 24 g/kg, the protein aggregation was too inhibited to form developed gel networks.
Collapse
Affiliation(s)
- Bo Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jie Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|