51
|
Zhao S, Niu C, Xing X, Fan L, Zheng F, Liu C, Wang J, Li Q. Revealing the changes of microbiota structure and function in broad bean paste mediated by sunlight and ventilation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
52
|
Zhou Y, Xu X, Chen Y, Gao J, Shi Q, Tian L, Cao L. Combined Metabolome and Transcriptome Analyses Reveal the Flavonoids Changes and Biosynthesis Mechanisms in Different Organs of Hibiseu manihot L. FRONTIERS IN PLANT SCIENCE 2022; 13:817378. [PMID: 35371117 PMCID: PMC8965375 DOI: 10.3389/fpls.2022.817378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Hibiseu manihot L. (Jinhuakui, JHK), also known as a garden landscape plant, is widely cultivated as a landscape plant having pharmacological effects due to its high flavonoids content. Although flavonoids were the main active pharmaceutical ingredients in JHK, little information was obtained about the content, composition, and accumulation pattern of flavonoids in different tissues. Most studies only identified a few kinds of flavonoids in JHK limited by separation and identification problems. Therefore, combined metabolome and transcriptome analysis was performed to explore the accumulation patterns and biosynthesis mechanisms of flavonoids in JHK. In this study, we identified 160 flavonoids in 15 samples of JHK (flower, leaf, root, stem, and seeds) by using LC-MS/MS. Consistent with the total flavonoid content determination, these flavonoids were significantly accumulated in flowers, followed by leaves, stems, roots, and seeds. Among them, certain flavonoids, with high content, were also identified for the first time in JHK, such as tricetin, catechin, hesperidin, ncyanidin-3-O-sambubioside, astragalin, procyanidin B2/B3/C1, apigenin-5-O-glucoside, etc. Different tissues underwent significantly reprogramming of their transcriptomes and metabolites changes in JHK, particularly in the flavonoid, flavone, and flavonol biosynthesis pathways. We conducted a correlation analysis between RNA-seq and LC-MS/MS to identify the key genes and related flavonoids compounds, rebuild the gene-metabolites regulatory subnetworks, and then identified 15 key genes highly related to flavonoids accumulation in JHK. These key genes might play a fine regulatory role in flavonoids biosynthesis by affecting the gene expression level in different organs of JHK. Our results could be helpful for the improvement of the market/industrial utilization value of different parts of JHK, to pave the way for the regulatory mechanism research of flavonoids biosynthesis, and provide insight for studying the production quality improvement of JHK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Cao
- Agricultural College of Yanbian University, Yanji, China
| |
Collapse
|
53
|
Li H, Shi H, Xu P, Yu D. Metabolomics and microbiome reveal potential root microbiota affecting the alkaloidal metabolome in Aconitum vilmorinianum Kom. BMC Microbiol 2022; 22:70. [PMID: 35264111 PMCID: PMC8905797 DOI: 10.1186/s12866-022-02486-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 12/23/2022] Open
Abstract
Background The plant microbiome is vital for plant health, fitness, and productivity. Interestingly, plant metabolites and the plant microbiome can influence each other. The combination of metabolomics and microbiome may reveal the critical links between the plant and its microbiome. It is of great significance to agricultural production and human health, especially for Chinese medicine research. Aconitum vilmorinianum Kom. is a herb with alkaloid activities, and its roots are the raw material for some Chinese medicines. Former studies have investigated alkaloidal metabolites and antibacterial activities of endophytes in A. vilmorinianum roots. However, there are limited reports on the root microbiota that can influence the alkaloidal metabolome of A. vilmorinianum. Results This research used ultra performance liquid chromatography-tandem mass spectrometry technology and high-throughput sequencing to examine the alkaloidal metabolome, bacterial microbiota, and fungal microbiota in A. vilmorinianum roots at two different sites in China. The results revealed that the samples from the two sites were rich in distinct alkaloidal metabolites and recruited significantly different root microbiota. Based on bioinformatics analysis, we found the potential bacterial and fungal microbiota impacting the alkaloidal metabolome in A. vilmorinianum. Conclusion Our findings reveal the composition of the alkaloidal metabolome, bacterial root microbiota, and fungal root microbiota in A. vilmorinianum roots at two different sites. Potential root microbiota that can influence the alkaloidal metabolome of A. vilmorinianum are indicated. This study provides a strategy for the cultivation and research of A. vilmorinianum and other Chinese herbs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02486-1.
Collapse
Affiliation(s)
- Hongrui Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongdi Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
54
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
55
|
Huang G, Liao X, Han Q, Zhou Z, Liang K, Li G, Yang G, Tembrock LR, Wang X, Wu Z. Integrated Metabolome and Transcriptome Analyses Reveal Dissimilarities in the Anthocyanin Synthesis Pathway Between Different Developmental Leaf Color Transitions in Hopea hainanensis (Dipterocarpaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:830413. [PMID: 35310646 PMCID: PMC8928120 DOI: 10.3389/fpls.2022.830413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 05/31/2023]
Abstract
Changes in plant leaf color during development are directly related to the accumulation or degradation of certain phytochemicals such as anthocyanins. Since some anthocyanins can be beneficial to human health and provide insights into the biology of leaves, the underlying processes and timing by which plants produce these molecules has been the focus of numerous studies. The tree species Hopea hainanensis generally produces green leaves at all growth stages; however, a few explored individuals have been identified possessing red leaves on the top of the seedlings at a young stage. While the phenomenon of leaf color varying with age has been studied in several species, the underlying mechanisms are largely unknown in H. hainanensis. Using a metabolomics approach, the young red leaves in H. hainanensis were found to contain higher levels of anthocyanins and flavonoids than the young green-leaved individuals. Among anthocyanins, pelargonidin and cyanidin were the most likely candidates contributing to the red color of the young leaves. Transcriptome results indicated the genes related to the production of these anthocyanins were significantly upregulated, leading to greater accumulation of red pigments. Specifically, the expression of several MYB and bHLH genes in young red leaf lines was significantly higher than that in the young green leaf lines, especially HhMYB66, HhMYB91, HhMYB6, and HhbHLH70. As such these four transcription factors are probably the main regulatory genes resulting in young red leaves in H. hainanensis. From these results, comparative analyses with other species can be made to better understand the evolution of pigment biosynthesis and how anthocyanins function in plant metabolism and evolution/adaptation.
Collapse
Affiliation(s)
- Guihua Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiang Han
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zaizhi Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Kunnan Liang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Guangyou Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Guang Yang
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Xianbang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
56
|
Ya H, Li H, Liu X, Chen Y, Zhang J, Xie Y, Wang M, Xie W, Li S. Profiling of Widely Targeted Metabolomics for the Identification of chemical composition in epidermis, xylem and pith of Gleditsiae spina. Biomed Chromatogr 2022; 36:e5331. [PMID: 35000209 DOI: 10.1002/bmc.5331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/09/2022]
Abstract
Gleditsiae spina, the thorn of Gleditsia sinensis Lam., has a long history of being used as a traditional medicine in East Asian countries. However, only a few biologically active substances have been identified from Gleditsiae spina. In this study, the epidermis, xylem and pith of Gleditsiae spina, respectively, namely Gs-E, Gs-X and Gs-P, were studied. We used a widely targeted metabolomics method to investigate the chemical composition in Gs-E, Gs-X and Gs-P. A total of 728 putative metabolites were identified from Gleditsiae spina, including 211 primary metabolites and 517 secondary metabolites. These primary and secondary metabolites could be categorized into more than 10 different classes. Flavonoids, phenolic acids, lipids, and amino acids and derivatives, and organic acids constituted the main metabolite groups. Multivariate statistical analysis showed that the Gs-E, Gs-X and Gs-P samples could be clearly separated. Differential accumulated metabolite (DAM) analysis revealed that more than half of the DAMs exhibited the highest relative concentrations in Gs-E, and most of the DAMs showed the lowest relative concentrations in Gs-X. Moreover, 11 common differential primary metabolites and 79 common differential secondary metabolites were detected in all comparison groups. These results further our understanding of chemical composition and metabolite accumulation of Gleditsiae spina.
Collapse
Affiliation(s)
- Huiyuan Ya
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Huiru Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Xianghui Liu
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Ye Chen
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Yanfu Xie
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Mengshu Wang
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Wanyue Xie
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Shipeng Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
57
|
Zhang Z, Sun J, Zhao S, Lu Q, Pan L, Zhao B, Yu S. Effects of different rootstocks on phenolics in the skin of 'Cabernet Sauvignon' and widely targeted metabolome and transcriptome analysis. HORTICULTURE RESEARCH 2022; 9:uhac053. [PMID: 35664239 PMCID: PMC9154070 DOI: 10.1093/hr/uhac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/20/2022] [Indexed: 05/10/2023]
Affiliation(s)
| | | | - Shucheng Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Qianjun Lu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Lizhong Pan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | | | | |
Collapse
|
58
|
Li X, Li Y, Zhao M, Hu Y, Meng F, Song X, Tigabu M, Chiang VL, Sederoff R, Ma W, Zhao X. Molecular and Metabolic Insights into Anthocyanin Biosynthesis for Leaf Color Change in Chokecherry ( Padus virginiana). Int J Mol Sci 2021; 22:ijms221910697. [PMID: 34639038 PMCID: PMC8509056 DOI: 10.3390/ijms221910697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Xingshun Song
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| |
Collapse
|
59
|
Tang H, Tang J, Liu J, Zhou B, Chen Y. Metabolomics analyses reveal anthocyanins-rich accumulation in naturally mutated purple-leaf tea (Camellia sinensis L.). ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1968509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hao Tang
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Jinchi Tang
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Jiayu Liu
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Bo Zhou
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Yiyong Chen
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| |
Collapse
|
60
|
Chen J, Xue M, Liu H, Fernie AR, Chen W. Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. PLANT COMMUNICATIONS 2021; 2:100216. [PMID: 34327326 PMCID: PMC8299079 DOI: 10.1016/j.xplc.2021.100216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum L.) is a leading cereal crop, but has lagged behind with respect to the interpretation of the molecular mechanisms of phenotypes compared with other major cereal crops such as rice and maize. The recently available genome sequence of wheat affords the pre-requisite information for efficiently exploiting the potential molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets. Meanwhile, the successful application of metabolomics as an emergent large-scale profiling methodology in several species has demonstrated this approach to be accessible for reaching the above goals. One such productive avenue is combining metabolomics approaches with genetic designs. However, this trial is not as widespread as that for sequencing technologies, especially when the acquisition, understanding, and application of metabolic approaches in wheat populations remain more difficult and even arguably underutilized. In this review, we briefly introduce the techniques used in the acquisition of metabolomics data and their utility in large-scale identification of functional candidate genes. Considerable progress has been made in delivering improved varieties, suggesting that the inclusion of information concerning these metabolites and genes and metabolic pathways enables a more explicit understanding of phenotypic traits and, as such, this procedure could serve as an -omics-informed roadmap for executing similar improvement strategies in wheat and other species.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyun Xue
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|