51
|
|
52
|
Jiang H, Zhang W, Pu Y, Chen L, Cao J, Jiang W. Development and characterization of a novel active and intelligent film based on pectin and betacyanins from peel waste of pitaya (Hylocereus undatus). Food Chem 2022; 404:134444. [PMID: 36244062 DOI: 10.1016/j.foodchem.2022.134444] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
In the present study, peel waste of pitaya (Hylocereus spp.) was used to develop a novel active and functional film. The film was developed with a combination of the white-fleshed pitaya peel pectin (WPPP) as a biopolymer and white-fleshed pitaya peel betacyanins (WPPB) as an active constituent, respectively. Furthermore, montmorillonite (MMT), a cheap and environmental-friendly silicate material, was introduced into film matrix as a filler to reduce the moisture sensitivity of the film. The effect of the incorporation of WPPB on the properties of WPPP/MMT films was investigated. The colorimetric response of WPPP/MMT/WPPB to pH and ammonia was examined, respectively. Moreover, WPPP/MMT/WPPB-2 was employed to monitor the freshness of shrimp. The color of the film changed from redness to reddish-brown, and further to brownness, echoing the shrimp turned from fresh to spoiled. Therefore, WPPP/MMT/WPPB-2 composite films showed promise for the applications in monitoring the freshness of shrimp.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
53
|
Fabrication and characterization of pullulan-based composite films incorporated with bacterial cellulose and ferulic acid. Int J Biol Macromol 2022; 219:121-137. [PMID: 35931293 DOI: 10.1016/j.ijbiomac.2022.07.236] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 07/30/2022] [Indexed: 01/13/2023]
Abstract
Pullulan-based composite films incorporated with bacterial cellulose (BC) and ferulic acid (FA) were prepared by solution casting method. The rheological, morphological, barrier, optical, anti-fogging, and antioxidant properties of pullulan-based composite films doped with BC and FA were investigated. The rheological results showed that all film-forming solution was pseudoplastic fluid and its viscosity increased with the increase of BC content. An appropriate BC (2 %) and FA were uniformly dispersed in pullulan to form uniform and dense composite films. With the increase of BC content, the roughness and opacity of composite films increased while their UV-vis barrier performance was improved by incorporating BC and FA. Fourier transform infrared spectrometer analysis demonstrated that hydrogen bond interactions among pullulan, BC, and FA were found, and incorporating BC could increase the crystallinity of the composite films, thus enhancing their mechanical, barrier, hydrophobic, and thermal stability properties. Pullulan-based composite films incorporated with 2 % BC and FA (P-BC2-FA) showed better mechanical properties, water, oxygen, and carbon dioxide barrier performances, and its water contact angle value also increased compared with control, respectively. P-BC2-FA film showed superior anti-fogging and antioxidant activities. These results indicate that the P-BC2-FA film are expected to be a potential target of bioactive packaging.
Collapse
|
54
|
Ye X, Liu R, Qi X, Wang X, Wang Y, Chen Q, Gao X. Preparation of bioactive gelatin film using semi-refined pectin reclaimed from blueberry juice pomace: Creating an oxidation and light barrier for food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Ren W, Qiang T, Chen L. Recyclable and biodegradable pectin-based film with high mechanical strength. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
56
|
Najafi Z, Bildik F, Şahin-Yeşilçubuk N, Altay F. Enhancing oxidative stability of encapsulated echium oil by incorporation of saffron extract loaded nanoliposomes into electrospun pullulan-pea protein isolate-pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Nguyen TTT, Le TQ, Nguyen TTA, Nguyen LTM, Nguyen DTC, Tran TV. Characterizations and antibacterial activities of passion fruit peel pectin/chitosan composite films incorporated Piper betle L. leaf extract for preservation of purple eggplants. Heliyon 2022; 8:e10096. [PMID: 36016528 PMCID: PMC9396553 DOI: 10.1016/j.heliyon.2022.e10096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to synthesize biodegradable films based on crosslinked passion fruit peel pectin/chitosan (P/CH) films incorporated with a bioactive extract from Piper betle L. leaf, and investigate their morphological, mechanical, water vapor permeability, optical, and antibacterial properties. The thickness and water vapor permeability of P/CH blend films were proportional to the increasing concentration of Piper betle extract (PB). The tensile strength of P/CH/PB films was significantly reduced at 42.89% compared to the P/CH films. The morphological characterization affirmed that resultant blend films showed a well-organized homogeneous structure with no cracks. Moreover, the antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, and Klebsiella pneumoniae increased with the increased concentration of PB in the obtained films. Our results demonstrated that P/CH/PB blend films could be potentially used for food packaging applications.
Collapse
Affiliation(s)
- Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tu Quoc Le
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tuyet Thi Anh Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Lan Thi My Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| |
Collapse
|
58
|
Wang Y, Zhou Z, Han Y. Levan-chitosan blend films: Preparation, structural, physical properties and application in pork packaging. Int J Biol Macromol 2022; 217:624-632. [PMID: 35835307 DOI: 10.1016/j.ijbiomac.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Conventional fossil fuel-based packaging materials often brings of food safety and serious environmental pollution. It is significant to develop an environmentally-friendly packaging material. In this work, a levan-chitosan (LE/CS) blend film was fabricated via the solution casting method. The films were evaluated by Fourier transform infrared spectroscopy and X-ray diffraction, indicating the formation of hydrogen bonds between chitosan and levan. The mechanical properties of LE/CS films demonstrated a mechanical strength higher than CS films, and the best tensile strength appeared at a ratio of LE/CS (1:1) up to 18.78 ± 0.73 MPa. The addition of levan caused a significant increase in absorption of UV light with a reduction in swelling water of the blend films from 29.13 ± 0.53 % of chitosan film to 2.07 ± 0.27 % of LE/CS (1:1) film. A higher contact angle and lower WVP were observed for LE/CS blend films. LE/CS blend films were then used as packaging material for fresh pork and were well maintained the qualities. The study suggested that the new blend film might have a good prospect as a food packaging material.
Collapse
Affiliation(s)
- Yuehui Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
59
|
Zhang W, Rhim JW. Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
60
|
Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
61
|
Ghosh T, Priyadarshi R, Krebs de Souza C, Angioletti BL, Rhim JW. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Liu D, Zhang C, Pu Y, Chen S, Liu L, Cui Z, Zhong Y. Recent Advances in pH-Responsive Freshness Indicators Using Natural Food Colorants to Monitor Food Freshness. Foods 2022; 11:foods11131884. [PMID: 35804701 PMCID: PMC9265506 DOI: 10.3390/foods11131884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, due to the enhancement in consumer awareness of food safety, considerable attention has been paid to intelligent packaging that displays the quality status of food through color changes. Natural food colorants show useful functionalities (antibacterial and antioxidant activities) and obvious color changes due to their structural changes in different acid and alkali environments, which could be applied to detect these acid and alkali environments, especially in the preparation of intelligent packaging. This review introduces the latest research on the progress of pH-responsive freshness indicators based on natural food colorants and biodegradable polymers for monitoring packaged food quality. Additionally, the current methods of detecting food freshness, the preparation methods for pH-responsive freshness indicators, and their applications for detecting the freshness of perishable food are highlighted. Subsequently, this review addresses the challenges and prospects of pH-responsive freshness indicators in food packaging, to assist in promoting their commercial application.
Collapse
|
63
|
Gan L, Jiang G, Yang Y, Zheng B, Zhang S, Li X, Tian Y, Peng B. Development and characterization of levan/pullulan/chitosan edible films enriched with ε-polylysine for active food packaging. Food Chem 2022; 388:132989. [PMID: 35447595 DOI: 10.1016/j.foodchem.2022.132989] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023]
Abstract
The levan/pullulan/chitosan edible films, enriched with ε-polylysine, as an antimicrobial agent, were successfully fabricated by the casting method, and their applicability for food packaging was systematically evaluated by several analytical techniques. An increase in the levan/pullulan ratios (ranged from 0:6 to 3:3) in the films showed a decreased water solubility (from 72.21% to 26.64%) and oxygen permeability (from 48.75 × 10-2 g·mm·m-2·d-1·kPa-1 to 4.45 × 10-2 g·mm·m-2·d-1·kPa-1), and increased elongation at break (from 10.92% to 46.61%). All the films showed a strong inhibitory effect on two typical food-borne pathogens and good biodegradability in the soil. These films were employed as edible coatings on strawberries, and the storage stability was investigated by means of physical and biochemical parameters. Compared to control, the weight loss, firmness, and total soluble solids of the coated strawberries showed a downward trend. Overall, these findings suggest that the developed edible films could be a potential approach for sustainable active food packaging.
Collapse
Affiliation(s)
- Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Shihao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Xiaoguang Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China.
| | - Biyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| |
Collapse
|
64
|
Dong Z, Du Z, Wu X, Zhai K, Wei Z, Rashed MMA. Fabrication and characterization of ZnO nanofilms using extracted pectin of Premna microphylla Turcz leaves and carboxymethyl cellulose. Int J Biol Macromol 2022; 209:525-532. [PMID: 35405155 DOI: 10.1016/j.ijbiomac.2022.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
The current study sought to fabricate pectin nano-films from Premna microphylla Turcz (PMTP) leaves using a combination of ZnO-carboxymethyl cellulose. The rheological and physical properties of fabricated nano-ZnO films were studied. Spectroscopy FT-IR, microscopic study (SEM), thermogravimetry (TG), and XRD were applied to characterize the fabricated film. The antibacterial activity of the nanofilm was determined using the antibacterial circle method. The findings showed that the addition of PMTP can reduce the nanofilm color, water solubility/hydrophilicity, air permeability, and ultraviolet light permeability of the nanofilm. Treatment CPN0.5 achieved the optimized Tensile strength (TS) of 4.50 Mpa, significant differences compared to CPN2 (3.99 Mpa) and CPN1 (3.65 Mpa). In addition, treatment CPN1 achieved the lowest WVP value (29.35) compared to the highest value (41.62) achieved by CPN0.5 treatment with no significant differences with CPN3 (29.7) and CPN1 (30.98) treatments. Elongation (E%) at break was the best for each CP10 (74.9) and CPN0.5 (73.03). Moreover, ZnO can enhance the nanofilm activity and the nanofilm water swelling ratio. Furthermore, adding ZnO to the nano-formula improved the antibacterial activity of the fabricated film against Staphylococcus aureus. In sum, nanofilms fabricated of PMTP and ZnO possess promising prospects as antibacterial agents in packaging applications.
Collapse
Affiliation(s)
- Zeng Dong
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Ziqing Du
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Xingyue Wu
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Kefeng Zhai
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Zhaojun Wei
- School of Food and Biotechnology Engineering, Hefei University of Technology, Hefei 230009, China
| | - Marwan M A Rashed
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China.
| |
Collapse
|
65
|
Sun C, Cao J, Wang Y, Huang L, Chen J, Wu J, Zhang H, Chen Y, Sun C. Preparation and characterization of pectin-based edible coating agent encapsulating carvacrol/HPβCD inclusion complex for inhibiting fungi. Food Hydrocoll 2022; 125:107374. [DOI: 10.1016/j.foodhyd.2021.107374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
66
|
Extraction and Characterization of Pectin from Jerusalem ArtiChoke Residue and Its Application in Blueberry Preservation. COATINGS 2022. [DOI: 10.3390/coatings12030385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To prolong the storage period of blueberry and improve its shelf-life quality, an edible coating based on chitosan was developed, and different contents of pectin were added to the coating. In this study, Jerusalem artichoke residue was used as a source of pectin, which is a byproduct of the processing of inulin. The extracted pectin has a low cost and high quality, which is very suitable for the preservation of coating. The coating was prepared and the chemical properties of the coating were characterized by SEM, XRD, TG, and FTIR. The barrier properties of the coating were analyzed by thickness, water content, solubility, and water vapor permeability. The results showed that the pectin coating exhibited excellent performance in blueberry preservation. Following 16 days of storage, the decay and weight loss rates of blueberry treated with 0.2% pectin coating decreased by 33 and 22%, respectively. Moreover, the organic acid consumption of the coated blueberry slowed and the anthocyanins were better preserved. As a low-cost, safe, and efficient technology, the pectin chitosan composite coating has significant potential in the berries preservation industry.
Collapse
|
67
|
Sistla YS, Mehraj S. Molecular Simulations to Understand the Moisture, Carbon Dioxide, and Oxygen Barrier Properties of Pectin Films. J Mol Model 2022; 28:83. [DOI: 10.1007/s00894-022-05069-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
|
68
|
Zhang W, Rhim JW. Functional edible films/coatings integrated with lactoperoxidase and lysozyme and their application in food preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Zhang W, Rhim JW. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
70
|
Kong I, Degraeve P, Pui LP. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation-A Review. Foods 2022; 11:555. [PMID: 35206032 PMCID: PMC8871330 DOI: 10.3390/foods11040555] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Edible films with essential oils (EOs) are becoming increasingly popular as an alternative to synthetic packaging due to their environmentally friendly properties and ability as carriers of active compounds. However, the required amounts of EOs to impart effective antimicrobial properties generally exceed the organoleptic acceptance levels. However, by nanoemulsifying EOs, it is possible to increase their antimicrobial activity while reducing the amount required. This review provides an overview of the physico-chemical and mechanical properties of polysaccharide-based edible films incorporated with EOs nanoemulsions and of their application to the preservation of different food types. By incorporating EOs nanoemulsions into the packaging matrix, these edible films can help to extend the shelf-life of food products while also improving the quality and safety of the food product during storage. It can be concluded that these edible films have the potential to be used in the food industry as a green, sustainable, and biodegradable method for perishable foods preservation.
Collapse
Affiliation(s)
- Ianne Kong
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Pascal Degraeve
- BioDyMIA Research Unit, Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 rue Henri de Boissieu, F-01 000 Bourg en Bresse, France;
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
71
|
Mehraj S, Sistla YS. Optimization of process conditions for the development of pectin and glycerol based edible films: Statistical design of experiments. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
72
|
Rai M, Wypij M, Ingle AP, Trzcińska-Wencel J, Golińska P. Emerging Trends in Pullulan-Based Antimicrobial Systems for Various Applications. Int J Mol Sci 2021; 22:13596. [PMID: 34948392 PMCID: PMC8704206 DOI: 10.3390/ijms222413596] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, Maharashtra, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| |
Collapse
|
73
|
Roy S, Priyadarshi R, Ezati P, Rhim JW. Curcumin and its uses in active and smart food packaging applications - a comprehensive review. Food Chem 2021; 375:131885. [PMID: 34953241 DOI: 10.1016/j.foodchem.2021.131885] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023]
Abstract
Active and intelligent food packaging is an innovative technology to prevent food contamination and ensure food quality and safety. Active packaging protects the food from microbial contamination, while smart or intelligent packaging enables monitoring the freshness of the food or quality change in real-time. Curcumin, one of the most well-known natural colorants, has received a lot of attention for its excellent functional properties and ability to change color with changes in pH. Curcumin, the golden component of turmeric, a spice widely used in food since ancient times, is a cost-effective and abundant biomaterial with various biological properties such as antioxidant, antibacterial, antiviral, antitumor, and anti-inflammatory. Recently, active packaging or intelligent packaging systems have been actively developed using the functional properties of curcumin. In this review, we briefly reviewed curcumin's basic biological functions and discussed comprehensive and recent progress in using curcumin in various polymer-based active and smart food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
74
|
In situ synthesis of silver nanoparticles in pectin matrix using gamma irradiation for the preparation of antibacterial pectin/silver nanoparticles composite films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
75
|
Shivangi S, Dorairaj D, Negi PS, Shetty NP. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
76
|
Roy S, Priyadarshi R, Rhim JW. Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods 2021. [PMID: 34829072 DOI: 10.3390/foods10112789/s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Pullulan/chitosan-based multifunctional edible composite films were fabricated by reinforcing mushroom-mediated zinc oxide nanoparticles (ZnONPs) and propolis. The ZnONPs were synthesized using enoki mushroom extract and characterized using physicochemical methods. The mushroom-mediated ZnONPs showed an irregular shape with an average size of 26.7 ± 8.9 nm. The combined incorporation of ZnONPs and propolis pointedly improved the composite film's UV-blocking property without losing transparency. The reinforcement with ZnONPs and propolis improved the mechanical strength of the pullulan/chitosan-based film by ~25%. Additionally, the water vapor barrier property and hydrophobicity of the film were slightly increased. In addition, the pullulan/chitosan-based biocomposite film exhibited good antioxidant activity due to the propolis and excellent antibacterial activity against foodborne pathogens due to the ZnONPs. The developed edible pullulan/chitosan-based film was used for pork belly packaging, and the peroxide value and total number of aerobic microorganisms were significantly reduced in meat wrapped with the pullulan/chitosan/ZnONPs/propolis film.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
77
|
Roy S, Priyadarshi R, Rhim JW. Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods 2021; 10:foods10112789. [PMID: 34829072 PMCID: PMC8625050 DOI: 10.3390/foods10112789] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Pullulan/chitosan-based multifunctional edible composite films were fabricated by reinforcing mushroom-mediated zinc oxide nanoparticles (ZnONPs) and propolis. The ZnONPs were synthesized using enoki mushroom extract and characterized using physicochemical methods. The mushroom-mediated ZnONPs showed an irregular shape with an average size of 26.7 ± 8.9 nm. The combined incorporation of ZnONPs and propolis pointedly improved the composite film’s UV-blocking property without losing transparency. The reinforcement with ZnONPs and propolis improved the mechanical strength of the pullulan/chitosan-based film by ~25%. Additionally, the water vapor barrier property and hydrophobicity of the film were slightly increased. In addition, the pullulan/chitosan-based biocomposite film exhibited good antioxidant activity due to the propolis and excellent antibacterial activity against foodborne pathogens due to the ZnONPs. The developed edible pullulan/chitosan-based film was used for pork belly packaging, and the peroxide value and total number of aerobic microorganisms were significantly reduced in meat wrapped with the pullulan/chitosan/ZnONPs/propolis film.
Collapse
|
78
|
Reis CA, Júnior MG, Moreira FKV, Marconcini JM, Vaz LEVDSB. Synthesis and characterization of chitosan/montmorillonite nanocomposites for application as edible coating. FOOD SCI TECHNOL INT 2021; 29:25-39. [PMID: 34756149 DOI: 10.1177/10820132211057718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Edible coating can improve fruits shelf life and, consequently, reduce their waste. Chitosan, which presents a potential for chemical modifications and capacity to form films, can be an alternative for coating due to its biocompatibility, biodegradability, and antimicrobial properties. Chitosan film can be obtained through casting method presenting suitable mechanical properties, such as resistance to traction and elongation, ability to adhere to surfaces and selective permeability to gases, such as O2 and CO2. However, it is highly permeable to water vapor, which can limit its potential coating use. The properties of chitosan films can be improved through the formation of composites by inserting nanoclays as montmorillonite in the polymeric matrix. The objective of this study was to develop and characterize chitosan/montmorillonite nanocomposites for fruit coating aiming for future applications in the field of smart packaging. Nanocomposites were characterized by its microstructure, thermal, mechanical, and physicochemical properties. X-ray diffraction analysis indicated changes in crystallinity with the insertion of montmorillonite. Nanocomposites became more transparent and significantly reduced its water permeability rate with 0.5% w/w montmorillonite addition. Elastic rigidity and tensile strength of the films were improved. Chitosan/montmorillonite nanocomposites demonstrated the potential to improve the storage time of Williams pears.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Programa de Pós-Graduação em Engenharia de Biomateriais, 67739Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Mário Guimarães Júnior
- Departamento de Eletromecânica, Centro Federal de Educação Tecnológica de Minas Gerais, Araxá, MG, Brazil
| | | | - José Manoel Marconcini
- Laboratório Nacional de Nanotecnologia (LNNA), 564899Embrapa Instrumentação, São Carlos, SP, Brazil
| | - Lívia Elisabeth Vasconcellos de Siqueira Brandão Vaz
- Programa de Pós-Graduação em Engenharia de Biomateriais, 67739Universidade Federal de Lavras, Lavras, MG, Brazil.,Departamento de Engenharia, Escola de Engenharia, 67739Universidade Federal de Lavras, Lavras, MG, Brazil
| |
Collapse
|
79
|
Zarandona I, Bengoechea C, Álvarez-Castillo E, de la Caba K, Guerrero A, Guerrero P. 3D Printed Chitosan-Pectin Hydrogels: From Rheological Characterization to Scaffold Development and Assessment. Gels 2021; 7:175. [PMID: 34698192 PMCID: PMC8544460 DOI: 10.3390/gels7040175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Chitosan-pectin hydrogels were prepared, and their rheological properties were assessed in order to select the best system to develop scaffolds by 3D printing. Hydrogels showed a weak gel behavior with shear thinning flow properties, caused by the physical interactions formed between both polysaccharides, as observed by FTIR analysis. Since systems with high concentration of pectin showed aggregations, the system composed of 2 wt% chitosan and 2 wt% pectin (CHI2PEC2) was selected for 3D printing. 3D printed scaffolds showed good shape accuracy, and SEM and XRD analyses revealed a homogeneous and amorphous structure. Moreover, scaffolds were stable and kept their shape and size after a cycle of compression sweeps. Their integrity was also maintained after immersion in PBS at 37 °C, showing a high swelling capacity, suitable for exudate absorption in wound healing applications.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Carlos Bengoechea
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, Calle Virgen de África, 7, 41011 Sevilla, Spain; (C.B.); (E.Á.-C.); (A.G.)
| | - Estefanía Álvarez-Castillo
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, Calle Virgen de África, 7, 41011 Sevilla, Spain; (C.B.); (E.Á.-C.); (A.G.)
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, Calle Virgen de África, 7, 41011 Sevilla, Spain; (C.B.); (E.Á.-C.); (A.G.)
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
80
|
Disposable Food Packaging and Serving Materials-Trends and Biodegradability. Polymers (Basel) 2021; 13:polym13203606. [PMID: 34685364 PMCID: PMC8537343 DOI: 10.3390/polym13203606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Food is an integral part of everyone’s life. Disposable food serving utensils and tableware are a very convenient solution, especially when the possibility of the use of traditional dishes and cutlery is limited (e.g., takeaway meals). As a result, a whole range of products is available on the market: plates, trays, spoons, forks, knives, cups, straws, and more. Both the form of the product (adapted to the distribution and sales system) as well as its ecological aspect (biodegradability and life cycle) should be of interest to producers and consumers, especially considering the clearly growing trend of “eco-awareness”. This is particularly important in the case of single-use products. The aim of the study was to present the current trends regarding disposable utensils intended for contact with food in the context of their biodegradability. This paper has summarized not only conventional polymers but also their modern alternatives gaining the attention of manufacturers and consumers of single-use products (SUPs).
Collapse
|
81
|
Ren B, Wu W, Soladoye OP, Bak KH, Fu Y, Zhang Y. Application of biopreservatives in meat preservation: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Baojing Ren
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
- Westa College Southwest University Chongqing 400715 China
| | - Wei Wu
- College of Animal Science and Technology Southwest University Chongqing 400715 China
| | - Olugbenga P. Soladoye
- Agriculture and Agri‐Food Canada Government of Canada Lacombe Research and Development Centre 6000 C&E Trail Lacombe AB T4L 1W1 Canada
| | - Kathrine H. Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health University of Veterinary Medicine, Vienna Veterinärplatz 1 Vienna 1210 Austria
| | - Yu Fu
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| |
Collapse
|
82
|
Pullulan films loading saffron extract encapsulated in nanoliposomes; preparation and characterization. Int J Biol Macromol 2021; 188:62-71. [PMID: 34343589 DOI: 10.1016/j.ijbiomac.2021.07.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/25/2021] [Indexed: 01/16/2023]
Abstract
Nanoencapsulation of saffron extract (SE) components into the rapeseed lecithin nanoliposomes were performed by sonication of their aqueous dispersions as a green process. Dynamic light scattering (DLS) results exhibited that empty and SE loaded nanoliposomes (SENL) had average sizes in range of 118-138 nm, negative zeta potentials (-32.0 to -46.8 mV) and polydispersity index (PDI) less than 0.3 during storage for 28 days at 4 °C. Encapsulation efficiency of crocin was approximately 30%. The 70% of crocin released from SENLs within 5 h in PBS solution. Pullulan-based films were fabricated by incorporation of empty and SE loaded nanoliposomes into pullulan solution through casting method. The mechanical resistance and thermal stability of the films reduced by addition of nanoliposomes. FTIR and thermal characterizations indicated that SE was successfully encapsulated in the nanoliposomes and film matrix with high thermal stability. Incorporation of nanoliposomes enhanced the oxygen barrier properties of the films, while it didn't significantly affect the water vapor permeability (WVP) of the films. The obtained edible films or coatings can provide additional benefits due to unique flavor and color of saffron. In addition, the utilization of SE, can provide benefits for health-allegation from SE antioxidant capacity.
Collapse
|
83
|
Lai WF, Zhao S, Chiou J. Antibacterial and clusteroluminogenic hypromellose-graft-chitosan-based polyelectrolyte complex films with high functional flexibility for food packaging. Carbohydr Polym 2021; 271:118447. [PMID: 34364582 DOI: 10.1016/j.carbpol.2021.118447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Food packaging can extend the shelf life of food products and enhance the safety and quality of the food. This study reports food-grade polyelectrolyte complex films generated via electrostatic interactions between two cellulose-based agents [viz., hypromellose-graft-chitosan, and carmellose sodium]. At optimal conditions, our films show good barrier properties, high transparency, and high efficiency in post-production agent loading. They also demonstrate intrinsic antibacterial effects against both Gram-negative and Gram-positive bacteria. By using frozen chicken breasts as a model, the films enable real-time monitoring of the status of the frozen food due to the property of clusterisation-triggered emission. Along with their negligible toxicity, our films warrant further development as multi-functional films for effective and self-indicating food packaging.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region; School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.
| | - Shuyang Zhao
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Jiachi Chiou
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| |
Collapse
|
84
|
Zhang W, Jiang H, Rhim JW, Cao J, Jiang W. Tea polyphenols (TP): a promising natural additive for the manufacture of multifunctional active food packaging films. Crit Rev Food Sci Nutr 2021; 63:288-301. [PMID: 34229564 DOI: 10.1080/10408398.2021.1946007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a bioactive extract from tea leaves, tea polyphenols (TP) are safe and natural. Its excellent antioxidant and antibacterial properties are increasingly regarded as a good additive for improving degradable food packaging film properties. This article comprehensively reviewed the functional properties of active films containing TP developed recently. The effects of TP addition to enhancing active food packaging films' performance, including thickness, water sensitivity, barrier properties, color, mechanical properties, antioxidant, antibacterial, and intelligent discoloration properties, were discussed. Besides, the practical applications in food preservation of active films containing TP are also discussed. This work concluded that the addition of TP could impart antioxidant and antibacterial properties to active packaging films and act as a crosslinking agent to improve other physical and chemical properties of the film, such as mechanical and barrier properties. However, the effect of TP on specific properties of the active packaging film is complex, and the appropriate TP concentration needs to be selected according to the type of film matrix and the interaction between the components. Notably, the addition of TP improved the efficiency of the active packaging film in food preservation applications, which accelerates the process of replacing the traditional plastic-based food packaging with active packaging film.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China.,Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
85
|
Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers (Basel) 2021; 13:1544. [PMID: 34065779 PMCID: PMC8150976 DOI: 10.3390/polym13101544] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
Collapse
Affiliation(s)
| | | | | | | | - Siti Baidurah
- School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Malaysia; (J.Y.B.); (L.M.); (Y.S.K.); (G.S.T.)
| |
Collapse
|
86
|
Priyadarshi R, Ezati P, Rhim JW. Recent Advances in Intelligent Food Packaging Applications Using Natural Food Colorants. ACTA ACUST UNITED AC 2021. [DOI: 10.1021/acsfoodscitech.0c00039] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|