51
|
Song Y, Hu Y, Li J, Wang L, Jing W, Zhang L, Dai Y, Jia S, Meng X, Zhang H. Site-Directed Mutation of Salicylate Decarboxylase Gene and Mechanism of Ginkgo Acid Decarboxylation. Protein J 2023; 42:1-13. [PMID: 36527585 DOI: 10.1007/s10930-022-10086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Ginkgo seed is an important Chinese medicine and food resource in China, but the toxicity of ginkgo acid in it limits its application. Previous studies have found that salicylic acid decarboxylase (Sdc) has a decarboxylation degradation effect on ginkgo acid. In order to improve the decarboxylation ability of Sdc to Ginkgo acid, 11 residues of the Sdc around the substrate (salicylic acid) were determined as mutation targets according to the analysis of crystal structure of Sdc (PDB ID:6JQX), from Trichosporon moniliiforme WU-0401, and a total of 30 single point mutant enzymes and one compound mutant enzyme were obtained. With Ginkgo acid C15:1 as the substrate, it was found from activity assay that Sdc-Y64T and Sdc-P191A had higher decarboxylation activity, which increased by 105.18% and 116.74% compared with that of wild type Sdc, respectively. The optimal pH for Sdc Y64T and Sdc-P191A to decarboxylate Ginkgo acid C15:1 was 5.5, which is the same as the wild type Sdc. The optimal temperature of Sdc-P191A was 50 °C, which was consistent with that of the wild type Sdc, but the optimal temperature of the mutant Sdc-Y64T was 40 °C, which was 10 °C lower than that of wild type Sdc.
Collapse
Affiliation(s)
- Yuanyuan Song
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| | - Yanying Hu
- Jining University, Xingtan Road, New District, Qufu City, Shandong Province, People's Republic of China
| | - Jiaxin Li
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| | - Lin Wang
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| | - Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| | - Liming Zhang
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| | - Yujie Dai
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China.
| | - Shiru Jia
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| | - Xuan Meng
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| | - Huitu Zhang
- Tianjin Key Laboratory of Industrial Microbiology, Teda Campus, Tianjin University of Science and Technology, No. 9 of 13th Street, Tianjin Economic and Technological Development Zone TEDA, Tianjin, 300457, People's Republic of China
| |
Collapse
|
52
|
He C, Zhao X, Yao R, Xiao P. Food-medicine can promote cross-culture communication between East and West. CHINESE HERBAL MEDICINES 2023; 15:3-5. [PMID: 36875445 PMCID: PMC9975623 DOI: 10.1016/j.chmed.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | | | - Ruyu Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
53
|
Wang XZ, Chang YY, Chen Y, Wu HL, Wang T, Ding YJ, Yu RQ. Geographical origin traceability of medicine food homology species based on an extract-and-shoot inductively coupled plasma mass spectrometry method and chemometrics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Evaluation of matrix effects for pesticide residue analysis by QuEChERs coupled with UHPLC-MS/MS in complex herbal matrix. Food Chem 2022; 405:134755. [DOI: 10.1016/j.foodchem.2022.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
|
55
|
Xu J, Wei Y, Liu Q, Liu X, Zhu C, Tu Y, Lei J, Yu J. The bioactive amide alkaloids from the stems of Piper nigrum. Food Chem 2022; 405:134736. [DOI: 10.1016/j.foodchem.2022.134736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
|
56
|
Optimization of Extraction of Compound Flavonoids from Chinese Herbal Medicines Based on Quantification Theory and Evaluation of Their Antioxidant Activity. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9955690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant-derived flavonoids have been attracting increasing research interest because of their multiple health promoting effects, where numerous investigations were carried out on the optimization of extraction and bioactivities. This study aims to optimize the extraction process of compound flavonoids (CFs) from Chinese herbal medicines and detect their antioxidant activity in vitro. CFs were extracted from the raw materials named “medicine food homology,” composed of hawthorn, lotus leaf, tartary buckwheat, cassia seed, Lycium barbarum, and Poria cocos in a mass ratio of 4 : 2 : 2 : 1.5 : 1 : 1. L9 (34) orthogonal design, level effect and engineering average estimation, and quantification theory were utilized to improve the extraction method of CFs, and the predictive model for CFs yield was constructed. The 2,2ʹ-diphenyl-1-picrylhydrazyl (DPPH), 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), hydroxyl radical scavenging rate, and reducing power of CFs were measured. The highest CFs yield was obtained under the following extraction condition: liquid-solid ratio of 35 : 1 mL/g, extraction temperature of 75°C, extraction duration of 75 min, and extraction mode enzyme-assisted extraction. The forecasted yield was 37.62%. The result was accurate and the established prediction equation was reliable (R = 0.95). The antioxidant activity of CFs was significantly positively correlated with the concentration from 0.05 to 0.4 mg/mL. The DPPH, ABTS, hydroxyl radical scavenging abilities, and the reducing power of CFs were 81.82 ± 1.75%, 49.35 ± 0.09%, 89.78 ± 0.66%, and 0.232 ± 0.001 at the concentration of 0.4 mg/mL, respectively. CFs could be exploited as natural antioxidants in pharmaceuticals and functional foods.
Collapse
|
57
|
Li X, Chen F, Wang X, Xiong Y, Liu Z, Lin Y, Ni K, Yang F. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. BIORESOURCE TECHNOLOGY 2022; 360:127429. [PMID: 35667532 DOI: 10.1016/j.biortech.2022.127429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In order to increase the utilization of herbal residues, realize efficient utilization of resources, the bacterial community and anaerobic fermentation characteristics of alfalfa ensiling treated with 36 kinds of herbal residues were studied. All the herbal residues improved the anaerobic fermentation quality in different degrees, indicated by lower pH, NH3-N and butyric acid concentrations. However, the contents of lactic and acetic acids varied widely in silage with different herbal residues. Pearson's correlation analysis showed that the improved fermentation quality was closely associated with the variation of lactic acid bacteria community. Consequently, the herbal residues could improve anaerobic fermentation quality by stimulating desirable Lactobacillus species and inhibiting undesirable microbes. This study provides new insights for efficient utilization of herbal residues.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xuekai Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Liu
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
58
|
Xin P, Han S, Huang J, You X, Wu J. Natural Soybean Milk-Derived Bioactive Coatings for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34480-34487. [PMID: 35858126 DOI: 10.1021/acsami.2c09689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Foodborne biomaterials, derived from diets, comprise selfassembled collections of many micro- or nanoscale units with abundant nutrients and active substances. In this study, soybean milk (SBM) was selected as a tissue engineering product for simple and feasible wound repair. SBM is a common drink prepared from soybeans and is rich in soy protein, soy isoflavones, and other bioactive components. Thus, SBM has substantial potential for antioxidation and tissue remodeling. Here, the multifunctional effect of SBM as a bioactive coating for promoting wound healing was studied. The results showed that SBM has good biocompatibility and biological activity. It efficiently scavenges intracellular reactive oxygen species, significantly enhances epithelial cell migration, and improves angiogenesis, thereby accelerating tissue remodeling. The results of animal experiments further confirmed that the SBM-bioinspired coating has promising applications for cutaneous wound regeneration.
Collapse
Affiliation(s)
- Peikun Xin
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuyan Han
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
59
|
Ye Y, Shi L, Wang P, Yang M, Zhan P, Tian H, Liu J. Water extract of Ferula lehmanni Boiss. prevents high-fat diet-induced overweight and liver injury by modulating the intestinal microbiota in mice. Food Funct 2022; 13:1603-1616. [PMID: 35076647 DOI: 10.1039/d1fo03518e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity, often accompanied by hepatic steatosis, has been associated with an increased risk of health complications such as fatty liver disease and certain cancers. Ferula lehmannii Boiss., a food and medicine homologue, has been used for centuries as a seasoning showing anti-bacterial and anti-oxidant effects on digestive discomfort. In the present study, we sought to investigate whether a short-term oral administration of water extract of Ferula lehmanni Boiss. (WEFL) could prevent high-fat diet (HFD)-induced abnormal weight gain and hepatic steatosis in mice and its underlying mechanisms. WEFL reduced HFD-increased body weight, liver injury markers and inflammatory cytokines (i.e. IL-6 and IL-1β), and inhibited the elevation of AMPKα, SREBP-1c and FAS in HFD. Moreover, WEFL reconstructed the gut microbiota composition by increasing the relative abundances of beneficial bacteria, e.g. Akkermansia spp., while decreasing Desulfovibrio spp. and so on, thereby reversing the detrimental effects of HFD in mice. Removal of the gut microbiota with antibiotics partially eliminated the hepatoprotective effects of WEFL. Notably, WEFL substantially promoted the levels of short-chain fatty acids, especially butyric acid. To clarify the functional components at play in WEFL, we used UPLC-MS/MS to comprehensively detect its substance composition and found it to be a collection of polyphenol-rich compounds. Together, our findings demonstrate that WEFL prevented HFD-induced obesity and liver injury through the hepatic-microbiota axis, and such health-promoting value might be explained by the enriched abundant polyphenols.
Collapse
Affiliation(s)
- Yuting Ye
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Minmin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China. .,Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an, China
| | - Jianshu Liu
- Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an, China
| |
Collapse
|