51
|
Guimarães A, Venancio A, Abrunhosa L. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1803-1818. [DOI: 10.1080/19440049.2018.1500718] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ana Guimarães
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Armando Venancio
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís Abrunhosa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
52
|
Schmidt M, Lynch KM, Zannini E, Arendt EK. Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
53
|
Garnier L, Salas ML, Pinon N, Wiernasz N, Pawtowski A, Coton E, Mounier J, Valence F. Technical note: High-throughput method for antifungal activity screening in a cheese-mimicking model. J Dairy Sci 2018; 101:4971-4976. [DOI: 10.3168/jds.2017-13518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022]
|
54
|
Morassi LL, Bernardi AO, Amaral AL, Chaves RD, Santos JL, Copetti MV, Sant'Ana AS. Fungi in cake production chain: Occurrence and evaluation of growth potential in different cake formulations during storage. Food Res Int 2018; 106:141-148. [DOI: 10.1016/j.foodres.2017.12.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 01/16/2023]
|
55
|
Buahom J, Siripornadulsil S, Siripornadulsil W. Feeding with Single Strains Versus Mixed Cultures of Lactic Acid Bacteria and Bacillus subtilis KKU213 Affects the Bacterial Community and Growth Performance of Broiler Chickens. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-017-3045-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
Debonne E, Van Bockstaele F, De Leyn I, Devlieghere F, Eeckhout M. Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus niger and Penicillium paneum through application in par-baked wheat and sourdough bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Russo P, Fares C, Longo A, Spano G, Capozzi V. Lactobacillus plantarum with Broad Antifungal Activity as a Protective Starter Culture for Bread Production. Foods 2017; 6:foods6120110. [PMID: 29232917 PMCID: PMC5742778 DOI: 10.3390/foods6120110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Bread is a staple food consumed worldwide on a daily basis. Fungal contamination of bread is a critical concern for producers since it is related to important economic losses and safety hazards due to the negative impact of sensorial quality and to the potential occurrence of mycotoxins. In this work, Lactobacillus plantarum UFG 121, a strain with characterized broad antifungal activity, was analyzed as a potential protective culture for bread production. Six different molds belonging to Aspergillus spp., Penicillium spp., and Fusarium culmorum were used to artificially contaminate bread produced with two experimental modes: (i) inoculation of the dough with a commercial Saccharomyces cerevisiae strain (control) and (ii) co-inoculation of the dough with the commercial S. cerevisiae strain and with L. plantarum UFG 121. L. plantarum strain completely inhibited the growth of F. culmorum after one week of storage. The lactic acid bacterium modulated the mold growth in samples contaminated with Aspergillus flavus, Penicillium chrysogenum, and Penicillium expansum, while no antagonistic effect was found against Aspergillus niger and Penicillium roqueforti. These results indicate the potential of L. plantarum UFG 121 as a biocontrol agent in bread production and suggest a species- or strain-depending sensitivity of the molds to the same microbial-based control strategy.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
- Promis Biotech Via Napoli 25, 71122 Foggia, Italy.
| | - Clara Fares
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops (CREA-CI), S.S.673 km 25.200, 71122 Foggia, Italy.
| | - Angela Longo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Giuseppe Spano
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Vittorio Capozzi
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
58
|
Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367. Appl Environ Microbiol 2017; 83:AEM.01659-17. [PMID: 28842545 DOI: 10.1128/aem.01659-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively.IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB.
Collapse
|
59
|
Lačanin I, Mounier J, Pawtowski A, Dušková M, Kameník J, Karpíšková R. Assessment of the antifungal activity of Lactobacillus and Pediococcus spp. for use as bioprotective cultures in dairy products. World J Microbiol Biotechnol 2017; 33:188. [DOI: 10.1007/s11274-017-2354-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
|
60
|
Garnier L, Valence F, Mounier J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017; 5:E42. [PMID: 28788096 PMCID: PMC5620633 DOI: 10.3390/microorganisms5030042] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods.
Collapse
Affiliation(s)
- Lucille Garnier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Florence Valence
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
61
|
Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E. Antifungal Microbial Agents for Food Biopreservation-A Review. Microorganisms 2017; 5:microorganisms5030037. [PMID: 28698479 PMCID: PMC5620628 DOI: 10.3390/microorganisms5030037] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments—including fungicides and chemical preservatives—are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for ‘clean label’ food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.
Collapse
Affiliation(s)
- Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Florence Valence
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Monika Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Anne Thierry
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Emmanuel Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
62
|
Ribes S, Fuentes A, Talens P, Barat JM. Prevention of fungal spoilage in food products using natural compounds: A review. Crit Rev Food Sci Nutr 2017; 58:2002-2016. [PMID: 28394635 DOI: 10.1080/10408398.2017.1295017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The kingdom Fungi is the most important group of microorganism contaminating food commodities, and chemical additives are commonly used in the food industry to prevent fungal spoilage. However, the increasing consumer concern about synthetic additives has led to their substitution by natural compounds in foods. The current review provides an overview of using natural agents isolated from different sources (plants, animals, and microorganisms) as promising antifungal compounds, including information about their mechanism of action and their use in foods to preserve and prolong shelf life. Compounds derived from plants, chitosan, lactoferrin, and biocontrol agents (lactic acid bacteria, antagonistic yeast, and their metabolites) are able to control the decay caused by fungi in a wide variety of foods. Several strategies are employed to reduce the drawbacks of some antifungal agents, like their incorporation into oil-in-water emulsions and nanoemulsions, edible films and active packaging, and their combination with other natural preservatives. These strategies facilitate the addition of volatile agents into food products and, improve their antifungal effectiveness. Moreover, biological agents have been investigated as one of the most promising options in the control of postharvest decay. Numerous mechanisms of action have been elucidated and different approaches have been studied to enhance their antifungal effectiveness.
Collapse
Affiliation(s)
- Susana Ribes
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| | - Ana Fuentes
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| | - Pau Talens
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| | - Jose Manuel Barat
- a Food Technology Department , Universitat Politècnica de València , Valencia , Spain
| |
Collapse
|
63
|
Diversity of spoilage fungi associated with various French dairy products. Int J Food Microbiol 2017; 241:191-197. [DOI: 10.1016/j.ijfoodmicro.2016.10.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 11/23/2022]
|
64
|
|
65
|
Le Lay C, Coton E, Le Blay G, Chobert JM, Haertlé T, Choiset Y, Van Long NN, Meslet-Cladière L, Mounier J. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int J Food Microbiol 2016; 239:79-85. [PMID: 27350657 DOI: 10.1016/j.ijfoodmicro.2016.06.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 06/19/2016] [Indexed: 12/31/2022]
Abstract
Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition.
Collapse
Affiliation(s)
- Céline Le Lay
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Emmanuel Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Gwenaëlle Le Blay
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Marc Chobert
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, équipe Fonctions et Interactions des Protéines, B.P. 71627, 44316 Nantes Cedex 3, France
| | - Thomas Haertlé
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, équipe Fonctions et Interactions des Protéines, B.P. 71627, 44316 Nantes Cedex 3, France
| | - Yvan Choiset
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, équipe Fonctions et Interactions des Protéines, B.P. 71627, 44316 Nantes Cedex 3, France
| | - Nicolas Nguyen Van Long
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Laurence Meslet-Cladière
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|