51
|
Du R, Pei F, Kang J, Zhang W, Ping W, Ling H, Ge J. Optimization of cultivation strategy and medium for bacteriocin activity of Enterococcus faecium HDX-2. Prep Biochem Biotechnol 2021; 52:762-769. [PMID: 34704893 DOI: 10.1080/10826068.2021.1992782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A lactic acid bacteria (LAB) isolated from pickled Chinese cucumber was screened for bacteriocin production. The strain was identified to be Enterococcus faecium HDX-2. Based on the Plackett-Burman (PB) experiment, glucose, Ca2+, and initial pH were found to be the most significant parameters of bacteriocin production. Afterward, effects of the three main parameters on bacteriocin activity were further investigated by central composite design (CCD) and the optimum composition was glucose 22 g/L, Ca2+ 0.6 mM, and initial pH 7.2. Optimum results showed that bacteriocin activity was increased to 1337.60 ± 36.71 AU/mL, 2.23-fold higher than in MRS medium without parameters optimization. The bacteriocin also showed significant antimicrobial activity against Listeria monocytogenes in meat and cheese model system.
Collapse
Affiliation(s)
- Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, P.R. China.,Key Laboratory of Microbiology, School of Life Sciences, College of Heilongjiang Province, Heilongjiang University, Harbin, P. R. China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, P.R. China.,Key Laboratory of Microbiology, School of Life Sciences, College of Heilongjiang Province, Heilongjiang University, Harbin, P. R. China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, P.R. China.,Key Laboratory of Microbiology, School of Life Sciences, College of Heilongjiang Province, Heilongjiang University, Harbin, P. R. China
| | - Wen Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, P.R. China.,Key Laboratory of Microbiology, School of Life Sciences, College of Heilongjiang Province, Heilongjiang University, Harbin, P. R. China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, P.R. China.,Key Laboratory of Microbiology, School of Life Sciences, College of Heilongjiang Province, Heilongjiang University, Harbin, P. R. China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, P.R. China.,Key Laboratory of Microbiology, School of Life Sciences, College of Heilongjiang Province, Heilongjiang University, Harbin, P. R. China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, P.R. China.,Key Laboratory of Microbiology, School of Life Sciences, College of Heilongjiang Province, Heilongjiang University, Harbin, P. R. China
| |
Collapse
|
52
|
Wang J, Lei Y, Yu Y, Yin L, Zhang Y. Use of Acetic Acid to Partially Replace Lactic Acid for Decontamination against Escherichia coli O157:H7 in Fresh Produce and Mechanism of Action. Foods 2021; 10:2406. [PMID: 34681456 PMCID: PMC8535275 DOI: 10.3390/foods10102406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli O157:H7 is frequently detected in ready-to-eat produce and causes serious food-borne diseases. The decontamination efficacy of lactic acid (LA) is clearly established. In this study, LA was mixed with acetic acid (AA) to reduce costs while achieving consistent or better inhibitory effects. Time-kill curves and inoculation experiments using fresh-cut spinach and arugula indicated that 0.8%LA+0.2%AA shows similar antibacterial effects to those of 1%LA. To determine whether 1%LA and 0.8%LA+0.2%AA exert antibacterial effects by similar mechanisms, proteomics analysis was used. The proteins related to macromolecule localization, cellular localization, and protein unfolding were uniquely altered after the treatment with 1%LA, and the proteins related to taxis, response to stress, catabolic process, and the regulation of molecular function were uniquely altered after the treatment with 0.8%LA+0.2%AA. Based on these findings, combined with the results of a network clustering analysis, we speculate that cell membrane damage is greater in response to LA than to 0.8%LA+0.2%AA. This prediction was supported by cell membrane permeability experiments (analyses of protein, nucleotide, ATP, and alkaline phosphatase leakage), which showed that LA causes greater membrane damage than 0.8%LA+0.2%AA. These results provide a theoretical basis for the application of an acid mixture to replace LA for produce decontamination.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yue Lei
- Institute of Rice Research, Guizhou Academy of Agricultural, Guiyang 550009, China;
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Lebin Yin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| |
Collapse
|
53
|
Hossain MI, Mizan MFR, Roy PK, Nahar S, Toushik SH, Ashrafudoulla M, Jahid IK, Lee J, Ha SD. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res Int 2021; 148:110595. [PMID: 34507740 DOI: 10.1016/j.foodres.2021.110595] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Owing to their preservative and antimicrobial effects, postbiotics (metabolic byproducts of probiotics) are promising natural components for the food industry. Therefore, the present study aimed to investigate the efficacy of postbiotics collected from isolated Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2 against Listeria monocytogenes pathogens in planktonic cells, motility, and biofilm states. The analysis of the metabolite composition of the postbiotics revealed various organic acids, along with a few well-known bacteriocin-encoding genes with potential antimicrobial effects. Postbiotics maintained their residual antimicrobial activity over the pH range 1-6 but lost all activity at neutral pH (pH 7). Full antimicrobial activity (100%) was observed during heat treatment, even under the autoclaving condition.Minimum inhibitory concentration (MICs) of L. curvatus B.67 and L. plantarum M.2 against L. monocytogenes were 80 and 70 mg/mL, respectively. However, four sub-MICs of the postbiotics (1/2, 1/4, 1/8, and 1/16 MIC) were tested for inhibition efficacy against L. monocytogenes during different experiment in this study. Swimming motility, biofilm formation, and expression levels of target genes related to biofilm formation, virulence, and quorum-sensing were significantly inhibited with increasing postbiotics concentration. Postbiotics from L. plantarum M.2 exhibited a higher inhibitory effect than the postbiotics from L. curvatus B.67. Nonetheless, both these postbiotics from Lactobacillus spp. could be used as effective bio-interventions for controlling L. monocytogenes biofilm in the food industry.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Bangladesh
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea.
| |
Collapse
|
54
|
Inhibitory mechanism of cell-free supernatants of Lactobacillus plantarum on Proteus mirabilis and influence of the expression of histamine synthesis-related genes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
55
|
Antimicrobial peptide zp37 inhibits Escherichia coli O157:H7 in alfalfa sprouts by inflicting damage in cell membrane and binding to DNA. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
The inhibition of cell-free supernatants of several lactic acid bacteria on the selected psychrophilic spoilage bacteria in liquid whole egg. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Antibacterial mechanisms of bacteriocin BM1157 against Escherichia coli and Cronobacter sakazakii. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Wei Z, Shan C, Zhang L, Ge D, Wang Y, Xia X, Liu X, Zhou J. A novel subtilin-like lantibiotics subtilin JS-4 produced by Bacillus subtilis JS-4, and its antibacterial mechanism against Listeria monocytogenes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Label free-based proteomic analysis of the food spoiler Pseudomonas fluorescens response to lactobionic acid by SWATH-MS. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
60
|
A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: Isolation, purification, identification, antibacterial and antibiofilm activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110826] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Daliri EBM, Ofosu FK, Xiuqin C, Chelliah R, Oh DH. Probiotic Effector Compounds: Current Knowledge and Future Perspectives. Front Microbiol 2021; 12:655705. [PMID: 33746935 PMCID: PMC7965967 DOI: 10.3389/fmicb.2021.655705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanism behind probiotic action will enable a rational selection of probiotics, increase the chances of success in clinical studies and make it easy to substantiate health claims. However, most probiotic studies over the years have rather focused on the effects of probiotics in health and disease, whereas little is known about the specific molecules that trigger effects in hosts. This makes it difficult to describe the detailed mechanism by which a given probiotic functions. Probiotics communicate with their hosts through molecular signaling. Meanwhile, since the molecules produced by probiotics under in vitro conditions may differ from those produced in vivo, in vitro mechanistic studies would have to be conducted under conditions that mimic gastrointestinal conditions as much as possible. The ideal situation would, however, be to carry out well-designed clinical trials in humans (or the target animal) using adequate quantities of the suspected probiotic molecule(s) or adequate quantities of isogenic knock-out or knock-in probiotic mutants. In this review, we discuss our current knowledge about probiotic bacteria and yeast molecules that are involved in molecular signaling with the host. We also discuss the challenges and future perspectives in the search for probiotic effector molecules.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Chen Xiuqin
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
62
|
Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms 2021; 9:349. [PMID: 33578806 PMCID: PMC7916596 DOI: 10.3390/microorganisms9020349] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Fermentation processes have been used for centuries for food production and preservation. Besides the contribution of fermentation to food quality, recently, scientific interest in the beneficial nature of fermented foods as a reservoir of probiotic candidates is increasing. Fermented food microbes are gaining attention for their health-promoting potential and for being genetically related to human probiotic bacteria. Among them, Lactiplantibacillus (Lpb.) plantarum strains, with a long history in the food industry as starter cultures in the production of a wide variety of fermented foods, are being investigated for their beneficial properties which are similar to those of probiotic strains, and they are also applied in clinical interventions. Food-associated Lpb. plantarum showed a good adaptation and adhesion ability in the gastro-intestinal tract and the potential to affect host health through various beneficial activities, e.g., antimicrobial, antioxidative, antigenotoxic, anti-inflammatory and immunomodulatory, in several in vitro and in vivo studies. This review provides an overview of fermented-associated Lpb. plantarum health benefits with evidence from clinical studies. Probiotic criteria that fermented-associated microbes need to fulfil are also reported.
Collapse
Affiliation(s)
| | | | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100 Teramo, Italy; (N.G.-G.); (N.B.); (A.C.)
| | | |
Collapse
|
63
|
Su X, Wang L, Xie J, Liu X, Tomás H. Cyclotriphosphazene-based Derivatives for Antibacterial Applications: An Update on Recent Advances. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201001154127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a phosphorus scaffold, hexachlorocyclotriphosphazene (HCCP) is widely used
for the synthesis of varieties of derivatives, including metal-binding complexes and several
unique organometallic compounds, which exhibit potential catalytic, flame retardant and biological
activities. Some metal-binding HCCP derivatives have shown antibacterial activities as
free ligands and metal complexes. These derivatives can also serve as building blocks for the
formation of antibacterial metal-containing polymers. This mini-review is focused on the design
and development of HCCP derivatives as potential antibacterial agents with representative
examples as well as antibacterial mechanisms from recent years.
Collapse
Affiliation(s)
- Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - JingHua Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - XiaoHui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
64
|
Zgheib H, Belguesmia Y, Boukherroub R, Drider D. Alginate Nanoparticles Enhance Anti-Clostridium perfringens Activity of the Leaderless Two-Peptide Enterocin DD14 and Affect Expression of Some Virulence Factors. Probiotics Antimicrob Proteins 2021; 13:1213-1227. [PMID: 33481224 DOI: 10.1007/s12602-020-09730-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Here, we report a novel approach to improve the anti-Clostridium perfringens activity of the leaderless two-peptide enterocin 14 (EntDD14), produced by Enterococcus faecalis 14. This strategy consists of loading EntDD14 onto alginate nanoparticles (Alg NPs), which are made of a safe polymer. The resulting formulation (EntDD14/Alg NPs) was able to reduce up to four times the minimum inhibitory concentration (MIC) of EntDD14 against C. perfringens pathogenic strains isolated from a chicken affected by necrotic enteritis (NE). Interestingly, this formulation remained active under conditions mimicking the human and chicken gastric tract. Assays conducted to establish the impact of this formulation on the intestinal epithelial cell line Caco-2 and the human colorectal adenocarcinoma cell line HT29 revealed the absence of cytotoxicity of both free-EntDD14 and EntDD14 loaded onto the alginate nanoparticles (EntDD14/Alg NPs) against the aforementioned eukaryotic cells, after 24 h of contact. Notably, EntDD14 and EntDD14/Alg NPs, both at a sub-inhibitory concentration, affected the expression of genes coding for clostridial toxins such as toxin α, enteritis B-like toxin, collagen adhesion protein and thiol-activated cytolysin. Further, expression of these genes was significantly down-regulated following the addition of EntDD14/Alg NPs, but not affected upon addition of EntDD14 alone. This study revealed that adsorption of EntDD14 onto Alg NPs leads to a safe and active formulation (EntDD14/Alg NPs) capable of affecting the pathogenicity of C. perfringens. This formulation could therefore be used in the poultry industry as a novel approach to tackle NE.
Collapse
Affiliation(s)
- Hassan Zgheib
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France. UMR, 8520 - IEMN, 59000, Lille, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France. UMR, 8520 - IEMN, 59000, Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| |
Collapse
|
65
|
Mining, heterologous expression, purification and characterization of 14 novel bacteriocins from Lactobacillus rhamnosus LS-8. Int J Biol Macromol 2020; 164:2162-2176. [DOI: 10.1016/j.ijbiomac.2020.08.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
66
|
Lu Y, Aizhan R, Yan H, Li X, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Characterization, modes of action, and application of a novel broad-spectrum bacteriocin BM1300 produced by Lactobacillus crustorum MN047. Braz J Microbiol 2020; 51:2033-2048. [PMID: 32537676 PMCID: PMC7688877 DOI: 10.1007/s42770-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022] Open
Abstract
Bacteriocins are ribosomally synthesized peptides with antibacterial activity against food-borne pathogenic bacteria that cause spoilage, possessing important potential for use as a natural preservative in the food industry. The novel bacteriocin BM1300 produced by Lactobacillus crustorum MN047 was identified after purification in this study. It displayed broad-spectrum antibacterial activity against some selected Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) values of BM1300 against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 were 13.4 μg/mL and 6.7 μg/mL, respectively. Moreover, BM1300 showed excellent thermal (between 60 and 120 °C), pH (2-11), and chemical (Tween-40, Tween-80, Triton X-100, and EDTA) stabilities. Time-kill curves revealed that BM1300 exhibited bactericidal activity against S. aureus and E. coli. The scanning and transmission electron microscopy indicated that BM1300 acted by disrupting the cell membrane integrity and increasing cell membrane permeabilization of indicator bacteria. The disruption of cell membrane integrity caused by BM1300 was further demonstrated by the uptake of propidium iodide (PI) and the release of intracellular lactate dehydrogenase (LDH) and nucleic acid and proteins. Moreover, BM1300 affected cell cycle distribution to exert antibacterial activity collaboratively. Meanwhile, BM1300 inhibited the growth of S. aureus and E. coli of beef meat and improved the microbiological quality of beef meat. These findings place BM1300 as a potential biopreservative in the food industry.
Collapse
Affiliation(s)
- Yingying Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Rakhmanova Aizhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
67
|
Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. Int J Biol Macromol 2020; 164:845-854. [DOI: 10.1016/j.ijbiomac.2020.07.192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
|
68
|
|
69
|
Qiao Z, Chen J, Zhou Q, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X. Purification, characterization, and mode of action of a novel bacteriocin BM173 from Lactobacillus crustorum MN047 and its effect on biofilm formation of Escherichia coli and Staphylococcus aureus. J Dairy Sci 2020; 104:1474-1483. [PMID: 33246623 DOI: 10.3168/jds.2020-18959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023]
Abstract
There is an increasing demand for dairy products, but the presence of food-spoilage bacteria seriously affects the development of the dairy industry. Bacteriocins are considered to be a potential antibacterial or antibiofilm agent that can be applied as a preservative. In this study, bacteriocin BM173 was successfully expressed in the Escherichia coli expression system and purified by a 2-step method. Furthermore, it exhibited a broad-spectrum antibacterial activity, high thermal stability (121°C, 20 min), and broad pH stability (pH 3-11). Moreover, the minimum inhibitory concentration values of BM173 against E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923 were 14.8 μg/mL and 29.6 μg/mL, respectively. Growth and time-kill curves showed that BM173 exhibited antibacterial and bactericidal activity. The results of scanning electron microscopy and transmission electron microscopy demonstrated that BM173 increased membrane permeability, facilitated pore formation, and even promoted cell lysis. The disruption of cell membrane integrity was further verified by propidium iodide uptake and lactic dehydrogenase release. In addition, BM173 exhibited high efficiency in inhibiting biofilm formation. Therefore, BM173 has promising potential as a preservative used in the dairy industry.
Collapse
Affiliation(s)
- Zhu Qiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiaxin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qiaqia Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
70
|
Ning Y, Fu Y, Hou L, Ma M, Wang Z, Li X, Jia Y. iTRAQ-based quantitative proteomic analysis of synergistic antibacterial mechanism of phenyllactic acid and lactic acid against Bacillus cereus. Food Res Int 2020; 139:109562. [PMID: 33509445 DOI: 10.1016/j.foodres.2020.109562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/14/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022]
Abstract
Phenyllactic acid (PLA) as a phenolic acid by lactic acid (LA) bacteria shows enhanced antibacterial activity when coexisting with LA, while the antibacterial mechanism of PLA combined with LA was unknown. Hence, the antibacterial mechanism of PLA and LA was investigated against Bacillus cereus. Flow cytometry and TEM analysis demonstrated that single PLA and LA disrupted the membrane integrity and the morphology, while combined PLA and LA synergistically enhanced the damage. iTRAQ-based proteomic analysis suggested that PLA down-regulated kdpB and inhibited K+ transport, disturbed the function of ribosome and expression of competence genes; LA down-regulated periplasmic phosphorus-binding proteins and inhibited phosphorus transport, disturbed the function of ribosome, TCA cycle, as well as purine and pyrimidine metabolism; and combined PLA and LA inhibited K+ and phosphorus transport, and influenced the synthesis of purine and pyrimidine metabolism. The investigation could provide some insights into the application of PLA in food preservation.
Collapse
Affiliation(s)
- Yawei Ning
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yunan Fu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Linlin Hou
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Mengge Ma
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xingfeng Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
71
|
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Crit Rev Food Sci Nutr 2020; 62:1105-1118. [DOI: 10.1080/10408398.2020.1835818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | |
Collapse
|
72
|
Song J, Chen H, Wei Y, Liu J. Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity and mechanism against Staphylococcus aureus. Carbohydr Polym 2020; 242:116418. [DOI: 10.1016/j.carbpol.2020.116418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
|
73
|
Zhang Y, Qin Y, Wang Y, Huang Y, Li P, Li P. Lactobacillus plantarum LPL-1, a bacteriocin producing strain, changed the bacterial community composition and improved the safety of low-salt fermented sausages. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
74
|
Effectiveness of Sodium Alginate Active Coatings Containing Bacteriocin EFL4 for the Quality Improvement of Ready-to-Eat Fresh Salmon Fillets during Cold Storage. COATINGS 2020. [DOI: 10.3390/coatings10060506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study developed a biopreservation method for ready-to-eat (RTE) fresh salmon fillets based on the use of bacteriocin EFL4 produced by bacteriocinogenic Enterococcus faecalis L04 previously isolated from Chinese sea bass (Lateolabrax maculatus). Bacteriocin EFL4 has the ability to inhibit the growth of several fish-spoilage bacteria and foodborne pathogens, including Staphylococcus aureus, Escherichia coli, Shewanella putrefaciens, Pseudomonas fluorescens and Listeria monocytogenes, and the minimal inhibitory concentration (MIC) for S. putrefaciens was 0.32 μg/mL. The biopreservation potential of bacteriocin EFL4 for RTE fresh salmon fillets during cold storage at 4 °C was tested for the first time on a laboratory scale. Microbiological and physicochemical properties, as well as organoleptic evaluations, have been done during the biopreservation trials. The results show that RTE fresh salmon fillets treated with 0.64 μg/mL bacteriocin EFL4 could significantly (p < 0.05) reduce the total viable count (TVC), total volatile basic nitrogen (TVB-N), K value and maintain the quality of RTE fresh salmon fillets during 8-day storage on the basis of the organoleptic evaluation results.
Collapse
|
75
|
Thyab Gddoa Al-sahlany S, Altemimi AB, Al-Manhel AJA, Niamah AK, Lakhssassi N, Ibrahim SA. Purification of Bioactive Peptide with Antimicrobial Properties Produced by Saccharomyces cerevisiae. Foods 2020; 9:foods9030324. [PMID: 32168785 PMCID: PMC7142856 DOI: 10.3390/foods9030324] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from Saccharomycescerevisiae (Baker’s yeast) by an ultrafiltration process (two membranes with cut-offs of 2 and 10 kDa) and purified using the ÄKTA Pure 25 system. Antibacterial peptide activity was characterized and examined against four bacterial strains including Gram-positive and Gram-negative bacteria. The optimum condition for yeast growth and antibacterial peptide production against both Escherichia. coli and Klebsiella aerogenes was 25–30 °C within a 48 h period. The isolated peptide had a molecular weight of 9770 Da, was thermostable at 50–90 °C for 30 min, and tolerated a pH range of 5–7 at 4 °C and 25 °C during the first 24 h, making this isolated antibacterial peptides suitable for use in sterilization and thermal processes, which are very important aspect in food production. The isolated antibacterial peptide caused a rapid and steady decline in the number of viable cells from 2 to 2.3 log units of gram-negative strains and from 1.5 to 1.8 log units of gram-positive strains during 24 h of incubation. The isolated antibacterial peptide from Saccharomyces cerevisiae may present a potential biopreservative compound in the food industry exhibiting inhibition activity against gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- Shayma Thyab Gddoa Al-sahlany
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
| | - Alaa Jabbar Abd Al-Manhel
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
| | - Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (S.T.G.A.-s.); (A.B.A.); (A.J.A.A.-M.)
- Correspondence: ; Tel.: +964-773-564-0090
| | - Naoufal Lakhssassi
- Department of Plant Soil and Agricultural Systems, Agriculture College, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
76
|
Wu X, Ju X, Du L, Wang L, He R, Chen Z. The Man-PTS subunit ⅡC is responsible for the sensitivity of Listeria monocytogenes to durancin GL. Food Sci Nutr 2020; 8:150-161. [PMID: 31993141 PMCID: PMC6977476 DOI: 10.1002/fsn3.1285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Target cell recognition is an important issue in the realization of bacteriocin's activity. In this report, we provide genetic and biochemical evidence of durancin GL, a new bacteriocin produced by Enterococcus durans 41D, and use ⅡC subunit in the mannose phosphotransferase system (Man-PTS) of Listeria monocytogenes as target/receptor. First, the L. monocytogenes mutants with Man-PTS IIC or IID deletion were constructed with the vector pHoss1. Then, the utilization of glucose and mannose and the sensitivity to durancin GL of the mutant strains were investigated. Afterward, the interactions between durancin GL and the subunits of IIC or IID in Man-PTS of L. monocytogenes were characterized by yeast two-hybrid system. The results showed that the L. monocytogenes mutants with either IIC or IID deletion were not only resistant to durancin GL, but also their absorption and utilization of glucose and mannose were not disturbed by the presence of durancin GL. Finally, in situ detection of the interaction between durancin GL and Man-PTS subunits of IIC or IID by yeast two-hybrid system revealed that there was a strong interaction between durancin GL and Man-PTS subunit IIC. However, the interaction between durancin GL and Man-PTS subunit IID was not present or weak. Based on the experimental evidence above, the Man-PTS subunit IIC is responsible for the sensitivity of L. monocytogenes to bacteriocin durancin GL.
Collapse
Affiliation(s)
- Xueyou Wu
- School of Food Science and Technology Jiangnan University Wuxi China
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Xingrong Ju
- School of Food Science and Technology Jiangnan University Wuxi China
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Lihui Du
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Lifeng Wang
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Rong He
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Zhengxing Chen
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
77
|
Zhao X, Chen L, Wu J, He Y, Yang H. Elucidating antimicrobial mechanism of nisin and grape seed extract against Listeria monocytogenes in broth and on shrimp through NMR-based metabolomics approach. Int J Food Microbiol 2019; 319:108494. [PMID: 31918346 DOI: 10.1016/j.ijfoodmicro.2019.108494] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 11/24/2022]
Abstract
Nisin and grape seed extract (GSE) have been widely used as food preservatives; however, the mechanism against pathogens at molecular level has not been well elucidated. This work aimed to investigate their antimicrobial effect against Listeria monocytogenes and to elucidate the mechanism by NMR-based metabolomics. Nisin exhibited enhanced in vitro antilisterial effect when combined with GSE (4.49 log CFU/mL reduction). Marked change in cell membrane permeability was observed in the combination group using confocal laser scanning microscopy; this was verified by increased leakage of protein and nucleic acid. The underlying antimicrobial mechanism was revealed by NMR coupled with multivariate analysis. Significant decreases in threonine, cysteine, ATP, NADP, adenine were observed, whereas a few of metabolites such as lactic acid and γ-aminobutyric acid (GABA) increased after nisin-GSE treatment (P < 0.05). Pathway analysis further manifested that the nisin-GSE inhibited the survival of L. monocytogenes by blocking the TCA cycle, amino acid biosynthesis and energy-producing pathway. Lastly, nisin and GSE were applied to shrimp and binary combination showed remarkably antilisterial activity (1.79 log CFU/g reduction). GABA shunt and protein degradation from shrimp compensated the unbalanced glycolysis and amino acid metabolism by providing energy and carbon source for L. monocytogenes inoculated on shrimp. Thus, they were more tolerant to nisin and GSE stresses as compared to the broth-grown culture.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lin Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Ji'en Wu
- Setsco Services Pte Ltd., 18 Teban Gardens Crescent, Singapore 608925, Singapore
| | - Yun He
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
78
|
Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. Int J Biol Macromol 2019; 144:151-159. [PMID: 31846663 DOI: 10.1016/j.ijbiomac.2019.12.090] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Enterococcus faecium TJUQ1 with high bacteriocin-producing ability was isolated from pickled Chinese celery. In this study, enterocin TJUQ1 was purified by ammonium sulfate precipitation, reversed-phase chromatography (Sep-Pak C8) and cation-exchange chromatography. The activity of the purified bacteriocin was 44,566.41 ± 874.69 AU/mg, which corresponds to a purification fold of 35.89 ± 2.34. The molecular mass was 5520 Da by MALDI-TOF MS and Tris-Tricine SDS-PAGE. The result of LC-MS/MS showed that the bacteriocin shared 59.15% identity with enterocin produced by E. faecium GN (accession no. O34071). PCR amplification revealed that E. faecium TJUQ1 possesses a gene encoding enterocin B with 60% identity to enterocin B. Circular dichroism (CD) spectroscopy showed that the molecular conformation was 32.6% helix, 19.5% beta, 12.9% turn and 35.0% random. The stability of enterocin TJUQ1 was measured. After exposure at 121 °C for 15 min, the residual antimicrobial activity of enterocin TJUQ1 was 85.95 ± 1.32%. The antimicrobial activity of enterocin TJUQ1 was still active over a pH range of 3-11. Enterocin TJUQ1 was inactivated after exposure to proteolytic enzymes but was not inactivated by lipase or amylase. These results showed that enterocin TJUQ1 was a novel class II bacteriocin. Enterocin TJUQ1 showed wide antibacterial activity against food-borne gram-negative and gram-positive pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella enterica. The MIC was 5.26 ± 0.24 μg/mL against L. monocytogenes CMCC 1595. SEM and TEM were used to observe the changes in the morphological and intracellular organization of L. monocytogenes CMCC 1595 cells treated with enterocin TJUQ1. The results demonstrated that enterocin TJUQ1 increased extracellular electrical conductivity, facilitated pore formation, triggered the release of UV-absorbing materials, ATP and LDH, and even caused cell lysis in L. monocytogenes CMCC 1595 cells. Based on the characterization, the wide inhibitory spectrum and mode of action determined so far, enterocin TJUQ1 is a potential preservative for the food industry.
Collapse
|
79
|
Inhibitory effect of Lactobacillus plantarum metabolites against biofilm formation by Bacillus licheniformis isolated from milk powder products. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
80
|
Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain. Food Res Int 2019; 125:108543. [DOI: 10.1016/j.foodres.2019.108543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
|
81
|
Guo D, Wang S, Li J, Bai F, Yang Y, Xu Y, Liang S, Xia X, Wang X, Shi C. The antimicrobial activity of coenzyme Q 0 against planktonic and biofilm forms of Cronobacter sakazakii. Food Microbiol 2019; 86:103337. [PMID: 31703870 DOI: 10.1016/j.fm.2019.103337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/31/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Coenzyme Q0 (CoQ0) has demonstrated antitumor, anti-inflammatory, and anti-angiogenic activities. Cronobacter sakazakii is an opportunistic foodborne pathogen associated with high mortality in neonates. In this study, the antimicrobial activity and possible antimicrobial mechanism of CoQ0 against C. sakazakii were investigated. Moreover, the inactivation effect of CoQ0 on C. sakazakii in biofilms was also evaluated. The minimum inhibitory concentration (MIC) of CoQ0 against C. sakazakii strains ranged from 0.1 to 0.2 mg/mL. Treatment caused cell membrane dysfunction, as evidenced by cell membrane hyperpolarization, decreased intracellular ATP concentration and cell membrane integrity, and changes in cellular morphology. CoQ0 combined with mild heat treatment (45, 50, or 55 °C) decreased the number of viable non-desiccated and desiccated C. sakazakii cells in a time- and dose-dependent manner in reconstituted infant milk. Furthermore, CoQ0 showed effective inactivation activity against C. sakazakii in biofilms on stainless steel, reducing the number of viable cells and damaging the structure of the biofilm. These findings suggest that CoQ0 has a strong inactivate effect on C. sakazakii and could be used in food production environments to effectively control C. sakazakii and reduce the number of illnesses associated with it.
Collapse
Affiliation(s)
- Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangting Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|