51
|
Nehal N, Choudhary B, Nagpure A, Gupta RK. DNA barcoding: a modern age tool for detection of adulteration in food. Crit Rev Biotechnol 2021; 41:767-791. [PMID: 33530758 DOI: 10.1080/07388551.2021.1874279] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Globalization of the food trade requires precise and exact information about the origin, methods of production, transformation technologies, authentication, and the traceability of foodstuffs. New challenges in food supply chains such as deliberate fraudulent substitution, tampering or mislabeling of food and its ingredients or food packaging incapacitates the market and eventually the national economy. Currently, no proper standards have been established for the authentication of most of the food materials. However, in order to control food fraud, various robust and cost-effective technologies have been employed, like a spectrophotometer, GC-MS, HPLC, and DNA barcoding. Among these techniques, DNA barcoding is a biotechnology advantage with the principle of using 400-800 bp long standardized unique DNA sequences of mitochondrial (e.g. COI) or plastidial (e.g. rbcL) of nuclear origin (e.g. ITS) to analyze and classify the food commodities. This review covers several traded food commodities like legumes, seafood, oils, herbal products, spices, fruits, cereals, meat, and their unique barcodes which are critically analyzed to detect adulteration or fraud. DNA barcoding is a global initiative and it is being accepted as a global standard/marker for species identification or authentication. The research laboratories and industries should collaborate to realize its potential in setting standards for quality assurance, quality control, and food safety for different food products.
Collapse
Affiliation(s)
- Nazish Nehal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Bharti Choudhary
- School of Studies in Biotechnology, Pt. Ravi Shankar Shukla University, Raipur, India
| | - Anand Nagpure
- Biology Division, State Forensic Science Laboratory, Bhopal, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
52
|
Modupalli N, Naik M, Sunil C, Natarajan V. Emerging non-destructive methods for quality and safety monitoring of spices. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
53
|
Mayr S, Beć KB, Grabska J, Schneckenreiter E, Huck CW. Near-infrared spectroscopy in quality control of Piper nigrum: A comparison of performance of benchtop and handheld spectrometers. Talanta 2021; 223:121809. [DOI: 10.1016/j.talanta.2020.121809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
|
54
|
Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
55
|
Bwambok DK, Siraj N, Macchi S, Larm NE, Baker GA, Pérez RL, Ayala CE, Walgama C, Pollard D, Rodriguez JD, Banerjee S, Elzey B, Warner IM, Fakayode SO. QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6982. [PMID: 33297345 PMCID: PMC7730680 DOI: 10.3390/s20236982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022]
Abstract
Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products.
Collapse
Affiliation(s)
- David K. Bwambok
- Chemistry and Biochemistry, California State University San Marcos, 333 S. Twin Oaks Valley Rd, San Marcos, CA 92096, USA;
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Nathaniel E. Larm
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Caitlan E. Ayala
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Charuksha Walgama
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - David Pollard
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr Dr, Winston-Salem, NC 27013, USA;
| | - Jason D. Rodriguez
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, US Food and Drug Administration, 645 S. Newstead Ave., St. Louis, MO 63110, USA;
| | - Souvik Banerjee
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - Brianda Elzey
- Science, Engineering, and Technology Department, Howard Community College, 10901 Little Patuxent Pkwy, Columbia, MD 21044, USA;
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Sayo O. Fakayode
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| |
Collapse
|
56
|
Esquerre CA, Achata EM, García-Vaquero M, Zhang Z, Tiwari BK, O'Donnell CP. Use of an NIR MEMS spectrophotometer and visible/NIR hyperspectral imaging systems to predict quality parameters of treated ground peppercorns. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Macêdo IYLD, Machado FB, Ramos GS, Costa AGDC, Batista RD, Filho ARG, Asquieri ER, Souza ARD, Oliveira AED, Gil EDS. Starch adulteration in turmeric samples through multivariate analysis with infrared spectroscopy. Food Chem 2020; 340:127899. [PMID: 32889203 DOI: 10.1016/j.foodchem.2020.127899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
|
58
|
Arendse E, Nieuwoudt H, Magwaza LS, Nturambirwe JFI, Fawole OA, Opara UL. Recent Advancements on Vibrational Spectroscopic Techniques for the Detection of Authenticity and Adulteration in Horticultural Products with a Specific Focus on Oils, Juices and Powders. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02505-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
59
|
Galvin-King P, Haughey SA, Elliott CT. The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods 2020; 9:foods9070944. [PMID: 32708804 PMCID: PMC7404712 DOI: 10.3390/foods9070944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
The spice paprika (Capsicum annuum and frutescens) is used in a wide variety of cooking methods as well as seasonings and sauces. The oil, paprika oleoresin, is a valuable product; however, once removed from paprika, the remaining spent product can be used to adulterate paprika. Near-infrared (NIR) and Fourier transform infrared (FTIR) were the platforms selected for the development of methods to detect paprika adulteration in conjunction with chemometrics. Orthogonal partial least squares discriminant analysis (OPLS-DA), a supervised technique, was used to develop the chemometric models, and the measurement of fit (R2) and measurement of prediction (Q2) values were 0.853 and 0.819, respectively, for the NIR method and 0.943 and 0.898 respectively for the FTIR method. An external validation set was tested against the model, and a receiver operating curve (ROC) was created. The area under the curve (AUC) for both methods was highly accurate at 0.951 (NIR) and 0.907 (FTIR). The levels of adulteration with 100% correct classification were 50–90% (NIR) and 40–90% (FTIR). Sudan I dye is a commonly used adulterant in paprika; however, in this study it was found that this dye had no effect on the outcome of the result for spent material adulteration.
Collapse
|
60
|
Shen Q, Song G, Li L, Wu J, Hu Z, Wang J, Chen K, Wang H. Triazole Hydrophilic Interaction Chromatography Mass Spectrometry–Based Method for Studying the Lipidomic Composition of Largemouth Bass (Micropterus salmoides) with Different Feeds. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01745-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Xue J, Shen Q. Real-time assessing the lipid oxidation of prawn (Litopenaeus vannamei) during air-frying by iKnife coupling rapid evaporative ionization mass spectrometry. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
62
|
Kucharska-Ambrożej K, Karpinska J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104278] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
63
|
Shawky E, Abu El-Khair RM, Selim DA. NIR spectroscopy-multivariate analysis for rapid authentication, detection and quantification of common plant adulterants in saffron (Crocus sativus L.) stigmas. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
64
|
In situ and real-time authentication of Thunnus species by iKnife rapid evaporative ionization mass spectrometry based lipidomics without sample pretreatment. Food Chem 2020; 318:126504. [PMID: 32146310 DOI: 10.1016/j.foodchem.2020.126504] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/08/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Tuna adulteration and mislabeling are serious problem worldwide and have caused economic loss and consumer rights violation. In this study, an electrometric knife (iKnife) coupling rapid evaporative ionization mass spectrometry (REIMS) and a multivariate recognition model were developed and employed for in situ and real-time authentication of four tuna species without sample preparation. The results showed that the lipidomic profiles were successfully acquired and the differences in fatty acids and phospholipids were statistically analyzed to be significant (p < 0.05). The model displayed the superb classification accuracy (>93%) and validation (R2(Y) = 0.992, Q2 = 0.986), and the main contributors of m/z 817.64, m/z 809.68, etc. were screened out to be used as potential biomarkers. Based on this technique, the identity of blind tuna samples could be unambiguously authenticated with the results displayed on a monitor screen directly. This study provided a front-line rapid detection method to prove the authenticity of tuna species.
Collapse
|
65
|
Lafeuille JL, Frégière-Salomon A, Michelet A, Henry KL. A Rapid Non-Targeted Method for Detecting the Adulteration of Black Pepper with a Broad Range of Endogenous and Exogenous Material at Economically Motivating Levels Using Micro-ATR-FT-MIR Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:390-401. [PMID: 31820962 DOI: 10.1021/acs.jafc.9b03865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Infrared spectroscopy is often used as a simple, fast, and green method to screen for economically motivated adulteration in spices. However, conventional microscopy remains the reference method. In this research, the combination of microscopy and Fourier-transform infrared spectroscopy in mapping mode, namely, micro-FTIR imaging, along with Principle Component Analysis were used to develop a non-targeted method for detecting a broad range of organic and mineral bulking agents that could potentially be used to adulterate black pepper. This method, based on the spatial distribution of black pepper chemical composition, has been thoroughly validated as a one-class, non-targeted classification method. Results are categorized as Typical or Atypical, where an Atypical result indicates a high probability of adulteration. For an Atypical outcome, a multitool investigational approach is then used for the detection and identification of the potential adulterant.
Collapse
Affiliation(s)
- Jean-Louis Lafeuille
- Food Integrity Laboratory , McCormick & Co., Inc. , 999 avenue des Marchés , 84200 Carpentras , France
| | - Aline Frégière-Salomon
- Food Integrity Laboratory , McCormick & Co., Inc. , 999 avenue des Marchés , 84200 Carpentras , France
| | - Alexandre Michelet
- Applications Development Lab France , PerkinElmer , ZA Courtaboeuf, 16 Avenue du Québec , Bâtiment Lys, 91140 Villebon-sur-Yvette , France
| | - Karen L Henry
- Technical Innovation Center , McCormick & Co., Inc. , 204 Wight Avenue , Hunt Valley , Maryland 21031 , United States
| |
Collapse
|
66
|
Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106802] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
He X, Wang J. Rapid and Nondestructive Forensic Identification of Tire Particles by Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy and Chemometrics. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1668947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xinlong He
- School of Forensic Science, People’s Public Security University of China, Beijing, China
| | - Jifen Wang
- School of Forensic Science, People’s Public Security University of China, Beijing, China
| |
Collapse
|
68
|
|
69
|
Oliveira MM, Cruz‐Tirado J, Barbin DF. Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review. Compr Rev Food Sci Food Saf 2019; 18:670-689. [DOI: 10.1111/1541-4337.12436] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Marciano M. Oliveira
- Dept. of Food Engineering, School of Food Engineering, Univ. of Campinas (Unicamp)Cidade Universitária Zeferino Vaz ‐ Barão Geraldo Campinas SP 13083‐970 Brazil
| | - J.P. Cruz‐Tirado
- Dept. of Food Engineering, School of Food Engineering, Univ. of Campinas (Unicamp)Cidade Universitária Zeferino Vaz ‐ Barão Geraldo Campinas SP 13083‐970 Brazil
| | - Douglas F. Barbin
- Dept. of Food Engineering, School of Food Engineering, Univ. of Campinas (Unicamp)Cidade Universitária Zeferino Vaz ‐ Barão Geraldo Campinas SP 13083‐970 Brazil
| |
Collapse
|