51
|
Huang S, Wang H, Wang S, Sha X, Chen N, Hu Y, Tu Z. Pectin Stabilized Fish Gelatin Emulsions: Physical Stability, Rheological, and Interaction Properties. Front Nutr 2022; 9:961875. [PMID: 35911094 PMCID: PMC9326445 DOI: 10.3389/fnut.2022.961875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Pectin, a kind of natural polysaccharide, shows the attractive potential as a natural stabilizer for protein emulsion. The aim of this study is to investigate the effect of pectin on the physical stability, rheology, interface, and interaction properties of the fish gelatin (FG) emulsion, as pectin was utilized to improve the stability of FG, fish oil emulsion. During the study, when pH < 6, the FG-pectin emulsion displayed better storage stability and salinity tolerance. Analyzing the result, pectin could avoid phase separation at the freeze-thaw process and prevent the liquid-gel transition of FG emulsions during storage. On the other hand, when pH ≥ 6, the emulsion displayed high viscosity due to the complex flocculation and stratified during long-term storage. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding of the FG-pectin complexes in the emulsion were all reduced. Overall, pectin improved the stability of FG emulsions through electrostatic repulsion, hydrophobic interactions, and steric hindrance.
Collapse
Affiliation(s)
- Sheng Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Shu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Xiaomei Sha
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
- Engineering Research Center for Freshwater Fish High-Value Utilization of Jiangxi, Jiangxi Normal University, Nanchang, China
| | - Ning Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
- Engineering Research Center for Freshwater Fish High-Value Utilization of Jiangxi, Jiangxi Normal University, Nanchang, China
- *Correspondence: Zongcai Tu,
| |
Collapse
|
52
|
Conjugation Induced by Wet-Heating of Gelatin and Low Methoxyl Pectin Improves the Properties and Stability of Microcapsules Prepared by Complex Coacervation. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
53
|
Production of antioxidant pectin fractions, drying pretreatment methods and physicochemical properties: towards pisco grape pomace revalue. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Chen W, Xia S, Xiao C. Complex coacervation microcapsules by tannic acid crosslinking prolong the antifungal activity of cinnamaldehyde against Aspergillus brasiliensis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Amani F, Rezaei A, Damavandi MS, Doost AS, Jafari SM. Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chem 2022; 377:131998. [PMID: 34999451 DOI: 10.1016/j.foodchem.2021.131998] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
The potential of almond gum and gelatin complex coacervates as a colloidal carrier for rosemary essential oil (REO) was investigated along with in-vitro gastrointestinal release and cytotoxicity. The optimum formulation (1 gelatin:2 almond gum and 7% (w/w) REO) was selected based on encapsulation efficiency (43.6%) and encapsulation yield (99.3%). The particle size was 6.9 µm with a high negative zeta-potential (-37.3 mV). FTIR and XRD data revealed that REO was properly loaded within carriers and there were interactions between gelatin and almond gum. Thermal stability of REO was enhanced after complex coacervation according to TGA. REO released slowly from carriers under simulated gastrointestinal fluid. Cytotoxicity of pure REO and REO-loaded complexes was evaluated on 4 T1 cell lines. Encapsulation of REO caused a reduction in toxicity. Overall, coacervates of gelatin-almond gum could be a promising carrier to enhance the application of bioactives in the food and drug industry with low toxicity.
Collapse
Affiliation(s)
- Fateme Amani
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Mohammad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Seid Mahdi Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
56
|
Yuan H, Li W, Chen C, Yu H, Huang J, Lou X, Tian H. The role of bacterial nanocellulose mats encapsulated with cinnamaldehyde on chilled meat preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haibin Yuan
- Department of Food Science and Technology Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 China
| | - Wei Li
- Department of Food Science and Technology Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 China
| | - Chen Chen
- Department of Food Science and Technology Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 China
| | - Haiyan Yu
- Department of Food Science and Technology Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 China
| | - Juan Huang
- Department of Food Science and Technology Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 China
| | - Xinman Lou
- Department of Food Science and Technology Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 China
| | - Huaixiang Tian
- Department of Food Science and Technology Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 China
| |
Collapse
|
57
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
58
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
59
|
Microencapsulation of Sichuan pepper essential oil in soybean protein isolate-Sichuan pepper seed soluble dietary fiber complex coacervates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
60
|
Shirvani A, Goli SAH, Varshosaz J, Sedaghat Doost A. Cinnamaldehyde encapsulation within new natural wax-based nanoparticles; formation, optimization and characterization. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2044843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Atefe Shirvani
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- Isfahan Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
61
|
Zhang Y, Li K, Chen M, Fang S, Zhen D, Cao J, Wu Z, Zhang K. A novel polysaccharide prepared from
Chrysanthemum morifolium
cv. Fubaiju tea and its emulsifying properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Zhang
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Kexin Li
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Maobin Chen
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Shangling Fang
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Da Zhen
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Jinghua Cao
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Zhengqi Wu
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing 100048 China
| | - Ke Zhang
- Key Laboratory of Fermentation Engineering Ministry of Education Wuhan 430068 China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics Wuhan 430068 China
- Hubei Key Laboratory of Industrial Microbiology Wuhan 430068 China
- School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
62
|
Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Qiu L, Zhang M, Adhikari B, Chang L. Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
64
|
Gan C, Liu Q, Zhang Y, Shi T, He WS, Jia C. A novel phytosterols delivery system based on sodium caseinate-pectin soluble complexes: Improving stability and bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
65
|
Li D, Cui H, Hayat K, Zhang X, Ho CT. Superior environmental stability of gelatin/CMC complex coacervated microcapsules via chitosan electrostatic modification. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
66
|
Influence of processing conditions on the physical properties, retention rate, and antimicrobial activity of cinnamaldehyde loaded in gelatin/pectin complex coacervates. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
67
|
Foaming with scCO2 and Impregnation with Cinnamaldehyde of PLA Nanocomposites for Food Packaging. Processes (Basel) 2022. [DOI: 10.3390/pr10020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microcellular nanocomposite foams functionalized with cinnamaldehyde (Ci) were obtained through two-step supercritical foaming and impregnation processing. PLA nanocomposite foams with different C30B concentrations (1, 2, and 3 wt.%) were obtained by foaming with scCO2 at 25 MPa and 135 °C and impregnated with Ci at 12 MPa and 40 °C. The effect of the C30B content and Ci incorporation on the morphological, structural, thermal, and release properties of the developed foams were investigated. The incorporation of Ci was not influenced by C30B’s addition. The presence of C30B and Ci incorporation reduced the average pore diameter slightly and the crystallinity degree of the foams extensively. Simultaneously, the experimental and theoretical characterization of the Ci release from the PLA nanocomposite foams in EtOH 50% was analyzed. The mechanism of Ci release from the foams was defined as a quasi-Fickian diffusion process that could be successfully described using the Korsmeyer–Peppas model. The active PLA foams presented a higher potential of migration and faster release when compared with that reported in commonly used PLA films, showing that biopolymeric foams could be potentially used as active food packaging to improve the migration of active compounds with low migration potentials in order to improve their biological activity in foods.
Collapse
|
68
|
Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
69
|
Chen Z, Cui B, Guo X, Zhou B, Wang S, Pei Y, Li B, Liang H. Fabrication and characterization of Pickering emulsions stabilized by desalted duck egg white nanogels and sodium alginate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:949-956. [PMID: 34302360 DOI: 10.1002/jsfa.11427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The waste of salted egg white resources has always been a serious problem in the food industry. In this current study, we report on a kind of Pickering emulsion system, which was stabilized by duck egg white nanogels (DEWNs) and sodium alginate (SA), followed by which this system was crosslinked by calcium carbonate (CaCO3 ) via controlling the gluconolactone (GDL) concentrations, aiming to open up a promising route for making full use of these protein resources. RESULTS The droplet size of the emulsion exhibited a reduction with an increase in SA concentrations, indicating that higher negative charges and steric hindrance was useful for a stable emulsion system. Meanwhile, the result of rheology measurement showed that storage modulus (G') values were higher than loss modulus (G″) values of the samples at higher GDL concentration, revealing the formation of elastic gel-like networks in the system, which was fabricated by SA and Ca2+ released by the CaCO3 particles. The gel-like network structure in the continuous phase improved both the freeze-thaw and thermal stability of the obtained Pickering emulsion system. Encouragingly, the Pickering high internal phase emulsions (HIPEs, φ = 0.75) stabilized by DEWN/SA3 -GDL3 were prepared, which could be stored at 4 °C for at least 30 days without oiling-off and creaming. CONCLUSION These findings not only develop a green ultra-stable Pickering emulsion system but also extend the potential commercial applications of duck egg white proteins in the food, cosmetics, and pharmaceutical industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ze Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bing Cui
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaohan Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Shishuai Wang
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan, China
| | - Yaqiong Pei
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Functional Food Engineering & Technology Research Center of Hubei Province, Huazhong Agriculture University, Wuhan, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
70
|
Effect of Co-Encapsulated Natural Antioxidants with Modified Starch on the Oxidative Stability of β-Carotene Loaded within Nanoemulsions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-Carotene (vitamin A precursor) and α-tocopherol, the utmost energetic form of vitamin E (VE), are known to be fat-soluble vitamins (FSVs) and essential nutrients needed to enhance the growth and metabolic functions of the human body. Their deficiencies are linked to numerous chronic disorders. Loading of FSVs within nanoemulsions could increase their oxidative stability and solubility. In this research, VE and β-Carotene (BC) were successfully co-entrapped within oil-in-water nanoemulsions of carrier oils, including tuna fish oil (TFO) and medium-chain triglycerides (MCTs), stabilized by modified starch and Tween-80. These nanoemulsions and free carrier oils loaded with vitamins were stored for over one month to investigate the impact of storage circumstances on their physiochemical characteristics. Entrapped bioactive compounds inside the nanoemulsions and bare oil systems showed a diverse behavior in terms of oxidation. A more deficiency of FSVs was found at higher temperatures that were more noticeable in the case of BC. VE behaved like an antioxidant to protect BC in MCT-based nanoemulsions, whereas it could not protect BC perfectly inside the TFO-loaded nanoemulsions. However, cinnamaldehyde (CIN) loading significantly enhanced the oxidative stability and FSVs retention in each nanoemulsion. Purity gum ultra (PGU)-based nanoemulsions comprising FSVs and CIN presented a greater BC retention (42.3%) and VE retention (90.1%) over one-month storage at 40 °C than Twee 80. The superior stability of PGU is accredited to the OSA-MS capabilities to produce denser interfacial coatings that can protect the entrapped compounds from the aqueous phase. This study delivers valuable evidence about the simultaneous loading of lipophilic bioactive compounds to enrich functional foods.
Collapse
|
71
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
72
|
Developing microencapsulated powders containing polyphenols and pectin extracted from Georgia-grown pomegranate peels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
73
|
Zhu H, Wu S, Zhang Z, MA T. Effect of crosslinking and drying method on the oxidative stability of lipid microcapsules obtained by complex coacervation. Food Funct 2022; 13:9049-9059. [DOI: 10.1039/d2fo01875f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crosslinking and drying method of microcapsules prepared by complex coacervation has been investigated in order to reach a better control of the oxidative stability of final powder product. Methyl...
Collapse
|
74
|
Premjit Y, Pandhi S, Kumar A, Rai DC, Duary RK, Mahato DK. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Res Int 2022; 151:110879. [PMID: 34980409 DOI: 10.1016/j.foodres.2021.110879] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
Food flavors are volatile compounds that impact the human sensory perception profoundly and find extensive applications in various food products. Because of their volatility and high sensitivity to pH, temperature, oxidation, and external conditions, they require adequate protection to last for a longer duration. Encapsulation plays a critical role in preserving food flavors by enhancing their thermal and oxidative stability, overcoming volatility limitations, and regulating their rapid release with improved bioavailability in food products. The current review focuses on the recent developments in food flavor encapsulation techniques, such as electrospinning/spraying, cyclodextrin inclusion complexes, coacervation, and yeast cell micro-carriers. The review also comprehensively discusses the role of encapsulants in achieving controlled flavor release, the mechanisms involved, and the mathematical modelling for flavor release. Specific well-established nanoencapsulation techniques render better encapsulation efficiency and controlled release of flavor compounds. The review examined specific emerging methods for flavor encapsulation, such as yeast cell encapsulation, which require further exploration and development. This article provides readers with up-to-date information on different encapsulation processes and coating methods used for flavor encapsulation.
Collapse
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Chandra Rai
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Raj Kumar Duary
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
75
|
Silva L, Dambros R, Leonardi G, Perrechil F. Biopolymer‐based microparticles for encapsulation of all‐
trans
‐retinoic acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.51335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Letícia Silva
- Departamento de Engenharia Química Universidade Federal de São Paulo – UNIFESP Diadema Brazil
| | - Roberta Dambros
- Departamento de Engenharia Química Universidade Federal de São Paulo – UNIFESP Diadema Brazil
| | - Gislaine Leonardi
- Faculty of Pharmaceutical Sciences University of Campinas Campinas Brazil
| | - Fabiana Perrechil
- Departamento de Engenharia Química Universidade Federal de São Paulo – UNIFESP Diadema Brazil
| |
Collapse
|
76
|
Liu B, Lai L, Muhoza B, Xia S. Complex coacervates based on gelatin and sodium carboxymethyl cellulose as carriers for cinnamaldehyde: Effect of gelatin Bloom values on coacervates formation and interfacial properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Chen K, Zhang M, Mujumdar AS, Wang H. Quinoa protein-gum Arabic complex coacervates as a novel carrier for eugenol: Preparation, characterization and application for minced pork preservation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
78
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
79
|
Valdivia-Rivera S, Herrera-Pool IE, Ayora-Talavera T, Lizardi-Jiménez MA, García-Cruz U, Cuevas-Bernardino JC, Cervantes-Uc JM, Pacheco N. Kinetic, Thermodynamic, Physicochemical, and Economical Characterization of Pectin from Mangifera indica L. cv. Haden Residues. Foods 2021; 10:2093. [PMID: 34574203 PMCID: PMC8467629 DOI: 10.3390/foods10092093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
The effect of temperature (60, 70, 80, and 90 °C) and time (30, 45, 60, 75, and 90 min) on citric acid extraction of Haden mango (Mangifera indica L. cv. Haden) peel pectin was evaluated in the present study. In order to obtain a better understanding of both the extraction process and the characteristics of the pectin (obtained from an agro-industrial waste) for a future scaling process, the following characterizations were performed: (1) Kinetic, with the maximum extraction times and yields at all evaluated temperatures; (2) thermodynamic, obtaining activation energies, enthalpies, entropies, and Gibbs free energies for each stage of the process; (3) physicochemical (chemical analysis, monosaccharide composition, degree of esterification, galacturonic acid content, free acidity, Fourier-transform infrared spectroscopy, thermogravimetric and derivative thermogravimetric analyses); and (4) economical, of the pectin with the highest yield. The Haden mango peel pectin was found to be characterized by a high-esterified degree (81.81 ± 0.00%), regular galacturonic acid content (71.57 ± 1.26%), low protein (0.83 ± 0.05%) and high ash (3.53 ± 0.02%) content, low mean viscometric molecular weight (55.91 kDa), and high equivalent weight (3657.55 ± 8.41), which makes it potentially useful for food applications.
Collapse
Affiliation(s)
- Sergio Valdivia-Rivera
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| | - Iván Emanuel Herrera-Pool
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| | - Teresa Ayora-Talavera
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| | - Manuel Alejandro Lizardi-Jiménez
- CONACYT, Universidad Autonoma de San Luis Potosi, Sierra Leona 550, Lomas Segunda Seccion, San Luis Potosi 78210, San Luis Potosi, Mexico;
| | - Ulises García-Cruz
- Centro de Investigacion y de Estudios Avanzados-Merida, Antigua Carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich, Mérida 97310, Yucatan, Mexico;
| | - Juan Carlos Cuevas-Bernardino
- CONACYT, Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico;
| | - José Manuel Cervantes-Uc
- Centro de Investigacion Cientifica de Yucatan, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Chuburna de Hidalgo, Merida 97205, Yucatan, Mexico;
| | - Neith Pacheco
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| |
Collapse
|
80
|
Ferreira RR, Souza AG, Rosa DS. Essential oil-loaded nanocapsules and their application on PBAT biodegradable films. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
81
|
Campini PAL, Oliveira ÉRD, Camani PH, Silva CGD, Yudice EDC, Oliveira SAD, Rosa DDS. Assessing the efficiency of essential oil and active compounds/poly (lactic acid) microcapsules against common foodborne pathogens. Int J Biol Macromol 2021; 186:702-713. [PMID: 34273341 DOI: 10.1016/j.ijbiomac.2021.07.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Essential oils' active compounds present great potential as a bactericidal agent in active packaging. The encapsulation in polymeric walls promotes their protection against external agents besides allowing controlled release. This work produced PLA capsules with three different active compounds, Cinnamomum cassia essential oil (CEO), eugenol (EEO), and linalool (LEO), by emulsion solvent evaporation method. Characterizations included SEM, Zeta potential, FTIR, TGA, and bactericidal activity against E. coli, S. aureus, L. monocytogenes, and Salmonella. The active compounds showed microbiological activity against all pathogens. CEO capsules showed superior colloidal stability. The active compounds' presence in all capsules was confirmed by FTIR analysis, with possible physical interaction between CEO, EEO, and the polymeric matrix, while LEO had a possible chemical interaction with PLA. TGA analysis showed a plasticizing effect of active compounds, and the loading efficiency was 39.7%, 50.7%, and 22.3% for CEO-PLA, EEO-PLA, and LEO-PLA, respectively. The capsules presented two release stages, sustaining activity against pathogens for up to 28 days, indicating a satisfactory internal morphology. This study presented methodology for encapsulation of antimicrobial compounds that can be suitable for active food packaging. CEO-PLA capsules regarding stability and antibacterial activity achieved the best results.
Collapse
Affiliation(s)
| | - Éder Ramin de Oliveira
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil
| | - Paulo Henrique Camani
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil
| | | | | | - Sueli Aparecida de Oliveira
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil
| | - Derval Dos Santos Rosa
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
82
|
Loke XJ, Chang CK, Hou CY, Cheng KC, Hsieh CW. Plasma-treated polyethylene coated with polysaccharide and protein containing cinnamaldehyde for active packaging films and applications on tilapia (Orechromis niloticus) fillet preservation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
83
|
Li DQ, Li J, Dong HL, Li X, Zhang JQ, Ramaswamy S, Xu F. Pectin in biomedical and drug delivery applications: A review. Int J Biol Macromol 2021; 185:49-65. [PMID: 34146559 DOI: 10.1016/j.ijbiomac.2021.06.088] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Natural macromolecules have attracted increasing attention due to their biocompatibility, low toxicity, and biodegradability. Pectin is one of the few polysaccharides with biomedical activity, consequently a candidate in biomedical and drug delivery Applications. Rhamnogalacturonan-II, a smaller component in pectin, plays a major role in biomedical activities. The ubiquitous presence of hydroxyl and carboxyl groups in pectin contribute to their hydrophilicity and, hence, to the favorable biocompatibility, low toxicity, and biodegradability. However, pure pectin-based materials present undesirable swelling and corrosion properties. The hydrophilic groups, via coordination, electrophilic addition, esterification, transesterification reactions, can contribute to pectin's physicochemical properties. Here the properties, extraction, and modification of pectin, which are fundamental to biomedical and drug delivery applications, are reviewed. Moreover, the synthesis, properties, and performance of pectin-based hybrid materials, composite materials, and emulsions are elaborated. The comprehensive review presented here can provide valuable information on pectin and its biomedical and drug delivery applications.
Collapse
Affiliation(s)
- De-Qiang Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Jun Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Hui-Lin Dong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jia-Qi Zhang
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Shri Ramaswamy
- Department of Bioproducts and Biosystems Engineering, Kaufert Laboratory, University of Minnesota, Saint Paul, MN 55108, USA
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
84
|
Hydrolyzed Karaya Gum: Gelatin Complex Coacervates for Microencapsulation of Soybean Oil and Curcumin. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5593065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This is the first report on utilizing hydrolyzed karaya gum (HKG) as a novel polyanion material for complex coacervation with gelatin A. With negative zeta potentials at pH > 2.5, HKG formed the complex coacervate with a maximum yield at pH 3.75 and 1 : 1 HKG:gelatin ratio. The optimal complex coacervates were used to encapsulate soybean oil containing curcumin using different shell:core ratios, homogenization speeds, concentrations of emulsifier, and drying techniques. Optical microscopy showed that increasing homogenization speed and Tween 80 concentration produced smaller and more uniform coacervate particles. Increasing the shell:core mass ratio from 1 to 4 resulted in a linear increase in encapsulation efficiencies for both soybean oil and curcumin. Accelerated peroxidation tests on the microcapsules showed enhanced protective effects against oil peroxidation when increasing shell:core ratios and using freeze-drying instead of oven-drying at 50 oC. In vitro release of curcumin in simulated gastric and intestinal fluids was faster when using freeze-drying and decreasing shell:core ratio. This study shows perspective novel applications of HKG in microencapsulating active ingredients for food and pharmaceutical industries.
Collapse
|
85
|
Xiong B, Zhang W, Wu Z, Liu R, Yang C, Hui A, Huang X, Xian Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int J Biol Macromol 2021; 181:824-834. [PMID: 33836194 DOI: 10.1016/j.ijbiomac.2021.03.202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Currently, there are few studies on acid-soluble pectin from okra, especially in biological activity for antioxidant and anti-inflammatory. In this study, the antioxidant properties of acid-soluble okra pectin components and their anti-inflammatory were explored. Firstly, two acid-soluble okra pectic fractions, namely crude acid-soluble okra pectin (CAOP) and acid-soluble okra pectin (AOP), were obtained and exhibited structural and compositional variation. The two pectic fractions contained a low degree of esterification (42.0-46.5%) and a relatively high uronic acid content (31.6-37.3%). AOP was composed of galacturonic acid (79.1 mol/%), galactose (4.3 mol/%), rhamnose (14.5 mol/%) and xylose (2.1 mol/%), and the molecular weight was 92.8 kDa. Morphological and thermal properties of acid-soluble okra pectin components were also investigated. Compared to CAOP, AOP expressed better antioxidant activity, and suppressed the NO production in LPS-induced RAW 264.7 macrophages. All the above results indicated that AOP had the potential to act as a natural antioxidant or a functional anti-inflammatory food, which would broaden the development and utilization of okra resources.
Collapse
Affiliation(s)
- Baoyi Xiong
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xusheng Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Zhaojun Xian
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| |
Collapse
|
86
|
Microencapsulation of hemp seed oil by pea protein isolate−sugar beet pectin complex coacervation: Influence of coacervation pH and wall/core ratio. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Carboxymethyl tara gum-lactoferrin complex coacervates as carriers for vitamin D3: Encapsulation and controlled release. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106347] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
88
|
Zhang J, Jia G, Wanbin Z, Minghao J, Wei Y, Hao J, Liu X, Gan Z, Sun A. Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Vehiculation of Methyl Salicylate from Microcapsules Supported on Textile Matrix. MATERIALS 2021; 14:ma14051087. [PMID: 33652651 PMCID: PMC7956389 DOI: 10.3390/ma14051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022]
Abstract
In recent years, textile industries have focused their attention on the development of functional finishing that presents durability and, consequently, controlled release. However, in the case of methyl salicylate microcapsules supported on a textile matrix, studies indicate only the interactions between substrate and microcapsules and the drug delivery system, not applying the release equations. This study reports the mechanism and kinetics of controlled release of microcapsules of gelatin and gum Arabic containing methyl salicylate as active ingredient incorporated into textile matrices. According to the results presented, it was possible to verify that the wall materials participated in the coacervation process, resulting in microcapsules with well-defined geometry, besides promoting the increase of the thermal stability of the active principle. The samples (100% cotton, CO, and 100% polyamide, PA) functionalized with microcapsules released methyl salicylate in a controlled manner, based on the adjustment made by the Korsmeyer–Peppas model, indicating a Fickian mechanism. The influence of temperature was noticeable when the samples were subjected to washing, since with higher temperature (50 °C), the release was more pronounced than when subjected to lower temperature (37 °C). The results presented in this study indicate that the mechanism of backbone release is influenced by the textile matrix and by the durability of the microcapsule during the wash cycles.
Collapse
|
90
|
da Silva Soares B, de Carvalho CWP, Garcia-Rojas EE. Microencapsulation of Sacha Inchi Oil by Complex Coacervates using Ovalbumin-Tannic Acid and Pectin as Wall Materials. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02594-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
91
|
Improving the functional properties of fish gelatin by conjugation with the water-soluble fraction of bitter almond gum. Food Sci Biotechnol 2021; 30:55-63. [PMID: 33552617 DOI: 10.1007/s10068-020-00847-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022] Open
Abstract
Maillard-based conjugation may be a useful way of improving the functional properties of food biopolymers. In this study, covalent attachment of fish gelatin (FG) and the water-soluble fraction of bitter almond gum (SBAG) was performed through dry heating of FG-SBAG mixtures (1:1, 1:2, and 2:1) for 2 days at 60 °C and 80% relative humidity. The formation of the FG-SBAG conjugates was confirmed by FTIR spectroscopy and the degree of glycosylation (DG). The changing color observed in all FG-SBAG conjugates was indicative of Maillard reactions. Heat stability of conjugates increased with increasing SBAG ratio, and denaturation temperatures were consistent with DG. Conjugation improved radical scavenging activity, water holding capacity, emulsifying, and foaming properties of the FG (p < 0.05). Overall, the FG: SBAG (1:2) conjugate was the optimum combination for improving examined functional properties. The results suggest that this conjugate can potentially serve as a new ingredient in food formulations.
Collapse
|
92
|
Guo Q, Shu X, Hu Y, Su J, Chen S, Decker EA, Gao Y. Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
93
|
Li M, Li C, Zhou Y, Tian H, Deng Q, Liu H, Zhu L, Yin X. Optimization of cinnamaldehyde microcapsule wall materials by experimental and quantitative methods. J Appl Polym Sci 2021. [DOI: 10.1002/app.49667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - You Zhou
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Qiaoyuan Deng
- School of Materials Science and Engineering Hainan University Haikou PR China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou PR China
| | - Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| |
Collapse
|
94
|
Ferreira LO, Santos MB, Garcia-Rojas EE. Complex coacervates between bovine serum albumin and anionic polysaccharides: formation and characterization. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The comparative study regarding complexes coacervated between Bovine Serum Albumin (BSA) and different polysaccharides, Pectin (PEC) and Gum Acacia (GA), was carried out by evaluating the influence of different ratios (protein:polysaccharide) and sodium chloride (NaCl) concentrations on turbidity and zeta potential. The BSA:PEC complexes were formed in a 10:1 ratio whereas BSA:GA at 3:1. The complexation pH showed different behavior, BSA: PEC complexes exhibited maximum turbidity in a wide pH range (4.9 to 1.5), while BSA: GA had maximum turbidity at pH 3.5. The increase in the concentration of NaCl negatively influenced the complexation. The NaCl concentration of 0.40 mol L-1 suppressed the interaction in BSA:PEC (10:1) and reduced the range formation of BSA:GA (3:1). The Fourier Transform Infrared (FTIR) demonstrated the participation not only of electrostatic interactions, but also of hydrogen bonds in the complexation. This initial study elucidated fundamental aspects about the formation of coacervate complexes between BSA:GA/PEC that assist in directing its application in food products especially, in acidic matrices (pH~4.0) as well as with low concentration of salts, in view of the effect of pH on maximum formation and sensitivity to NaCl. These complexes can be added directly to products in order to add nutritional value or even be used as a new matrix for the encapsulation of bioactive compounds.
Collapse
|
95
|
Zhao X, Mu Y, Dong H, Zhang H, Zhang H, Chi Y, Song G, Li H, Wang L. Effect of cinnamaldehyde incorporation on the structural and physical properties, functional activity of soy protein isolate‐egg white composite edible films. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaotong Zhao
- College of Food Science Northeast Agricultural University Harbin China
| | - Ying Mu
- College of Food Science Northeast Agricultural University Harbin China
| | - Heliang Dong
- Heilongjiang Quality Supervision and Testing Institute Harbin China
| | - Hong Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Huajiang Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Yujie Chi
- College of Food Science Northeast Agricultural University Harbin China
| | - Guangshuang Song
- College of Food Science Northeast Agricultural University Harbin China
| | - Hanyu Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Lechuan Wang
- College of Food Science Northeast Agricultural University Harbin China
| |
Collapse
|
96
|
Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int J Biol Macromol 2020; 168:59-66. [PMID: 33279567 DOI: 10.1016/j.ijbiomac.2020.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In this work, cinnamaldehyde-loaded liposomes decorated with different concentrations of chitosan (0, 0.25, 0.5, 1, 2, 3, and 4 mg/mL) were prepared and their physical and antibacterial properties were evaluated. The results showed that the physical decoration of chitosan improved the encapsulation efficiency and storage stability of the liposomes. Liposomes decorated with chitosan at the concentration of 0.25 to 4 mg/mL were able to achieve an obvious antibacterial efficiency against Staphylococcus aureus after only 10 min of incubation. The antibacterial efficiency of chitosan-decorated liposomes was still higher than 90% after being stored for 28 d when the chitosan concentration was greater than 1 mg/mL. Besides, increasing the chitosan concentration significantly decreased the minimum inhibitory concentration of the liposomes. The comparison of the antibacterial activities and mechanisms of cinnamaldehyde-loaded liposomes decorated with chitosan at a concentration of 4 mg/mL (CH-CL), cinnamaldehyde-loaded liposomes (CL), cinnamaldehyde, and chitosan revealed that chitosan and cinnamaldehyde exerted a cumulative and synergistic bacteriostatic effect in the liposomes. This led to damage to the cell membrane integrity, causing cell death by inducing leakage of intracellular components. These results can potentially provide guidance for the preparation and application of natural preservatives with rapid and long-term bacteriostatic effects.
Collapse
|
97
|
Emamverdian P, Moghaddas Kia E, Ghanbarzadeh B, Ghasempour Z. Characterization and optimization of complex coacervation between soluble fraction of Persian gum and gelatin. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
98
|
Ocak B. Gum arabic and collagen hydrolysate extracted from hide fleshing wastes as novel wall materials for microencapsulation of Origanum onites L. essential oil through complex coacervation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42727-42737. [PMID: 32720020 DOI: 10.1007/s11356-020-10201-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Renewable resource-based biodegradable materials attract more attention than petroleum-based biodegradable materials to support the sustainable development of ecology. Obtaining collagen hydrolysate (CH) from hide fleshing wastes of leather industry is an environmentally friendly way to develop multifunctional materials that can contribute to technological advances in different industries. In this study, 2:1, 1:1, and 1 2 ratios of gum arabic (GA) and CH extracted from hide fleshing waste were used as wall materials to encapsulate Origanum onites L. essential oil (OOEO) using the complex coacervation method. The encapsulation yield and efficiency, functional group composition, particle size, morphology, and thermal stability of the obtained OOEO microcapsules were characterized. The results showed that the obtained microcapsules had high encapsulation yield and efficiency, as well as good functional properties such as uniform morphology and low water activity. The best mass ratio for the biopolymers (GA:CH) was 1:1. Scanning electron microscopy analysis showed that OOEO microcapsule samples had a spherical shape. FTIR analysis was performed on obtained microcapsules, confirming the molecular interactions between GA and CH. These findings can be useful in designing an ideal wall material using GA and CH for microencapsulation of essential oils by the complex coacervation method.
Collapse
Affiliation(s)
- Bugra Ocak
- Faculty of Engineering, Department of Leather Engineering, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
99
|
Muhoza B, Xia S, Wang X, Zhang X, Li Y, Zhang S. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Crit Rev Food Sci Nutr 2020; 62:1363-1382. [DOI: 10.1080/10408398.2020.1843132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bertrand Muhoza
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xuejiao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
100
|
Santos MB, de Carvalho CWP, Garcia-Rojas EE. Microencapsulation of vitamin D 3 by complex coacervation using carboxymethyl tara gum (Caesalpinia spinosa) and gelatin A. Food Chem 2020; 343:128529. [PMID: 33191011 DOI: 10.1016/j.foodchem.2020.128529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/03/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D3 plays a fundamental role in human health; however, it is highly susceptible to environmental conditions and the gastrointestinal tract. In this study, complex coacervates obtained from gelatin A and carboxymethyl tara gum (CMTG) were used as wall materials for the encapsulation of vitamin D3 (VD3). Zeta potential and turbidity measurements were employed to optimize the pH and ratio (gelatin A:CMTG), and the results showed that the ideal conditions for the complex coacervation were pH 4.0 and a 6:1 ratio. The encapsulation efficiency (EE) was determined as a function of the total concentration of biopolymers (TC%) and the core-to-wall ratio, and the greatest EE (80%) was achieved at a TC of 1% and a ratio of 1:2; spherical particles with an average size of 0.25 µm were obtained. The microencapsulation increased the thermal stability of VD3, and FTIR confirmed the presence of the biopolymers and VD3 in the capsules. An in vitro simulation showed a more pronounced release in the small intestine with a vitamin bioaccessibility of 56%. The encapsulation of bioactive lipophilic compounds by complex coacervates of gelatin A and CMTG resulted in improved stability and prolonged release during digestion.
Collapse
Affiliation(s)
- Monique Barreto Santos
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ 23890-000, Brazil
| | - Carlos Wanderlei Piler de Carvalho
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ 23890-000, Brazil; Embrapa Agroindústria de Alimentos, Avenida das Américas 29501 Guaratiba, 23020-470 Rio de Janeiro, RJ, Brazil
| | - Edwin Elard Garcia-Rojas
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ 23890-000, Brazil; Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Av. dos Trabalhadores, 420, 27255-125 Volta Redonda, RJ, Brazil.
| |
Collapse
|