51
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
52
|
Xu T, Jiang C, Zhou Q, Gu Z, Cheng L, Tong Y, Hong Y. Preparation and characterization of octenyl succinic anhydride modified waxy maize starch hydrolyzate/chitosan complexes with enhanced interfacial properties. Carbohydr Polym 2021; 267:118228. [PMID: 34119181 DOI: 10.1016/j.carbpol.2021.118228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
The preparation and characterization of colloidal complexes based on octenyl succinic anhydride starch hydrolyzate (OSAS) and chitosan (CS) were conducted. Results showed that OSA-S/CS ratio (r) and pH significantly affected complex turbidities and yields. The highest turbidity and yield were obtained at r = 6:1 when pH was fixed, and at pH 6.5 when r was fixed. All complexes remained liquid-like except that formed at pH 6.5, which exhibited a gel structure due to the strongest complexation. OSA-S/CS complexes had intertwined core-shell microstructure and exhibited electrostatic interactions between COO- and NH3+ groups of OSA-S and CS, respectively. The complexes prepared at r = 6:1 and pH 6.0 exhibited the most suitable wettability (θow = 91.97°) and interfacial adsorption dynamics. The compact lamellar network and intact cores of these complexes were also shown. This work provides profound and comprehensive information about the formation and physicochemical properties of OSA-S/CS complexes.
Collapse
Affiliation(s)
- Tian Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Chengchen Jiang
- School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Qiwei Zhou
- School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Bio-Chemical Co. Ltd, Changchun 130033, PR China.
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, 1800 LiHu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
53
|
Liu J, Chai J, Zhang T, Yuan Y, Saini RK, Xu M, Li S, Shang X. Phase behavior, thermodynamic and rheological properties of ovalbumin/dextran sulfate: Effect of biopolymer ratio and salt concentration. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
54
|
Miao J, Xu N, Cheng C, Zou L, Chen J, Wang Y, Liang R, McClements DJ, Liu W. Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
55
|
Wang Y, Ghosh S, Nickerson MT. Effect of biopolymer mixing ratios and aqueous phase conditions on the interfacial and emulsifying properties of lentil protein isolate–κ‐carrageenan and lentil protein isolate–ι‐carrageenan complexes. Cereal Chem 2021. [DOI: 10.1002/cche.10465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingxin Wang
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | - Supratim Ghosh
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| |
Collapse
|
56
|
Cai Y, Huang L, Tao X, Su J, Xiao C, Zhao M, Zhao Q, Van der Meeren P. Enhanced acidic stability of O/W emulsions by synergistic interactions between okara protein and carboxymethyl cellulose. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
57
|
Tang Y, Gao C, Zhang Y, Tang X. The microstructure and physiochemical stability of Pickering emulsions stabilized by chitosan particles coating with sodium alginate: Influence of the ratio between chitosan and sodium alginate. Int J Biol Macromol 2021; 183:1402-1409. [PMID: 34019920 DOI: 10.1016/j.ijbiomac.2021.05.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to further improve the physiochemical stability of the chitosan (CS) particle-stabilized Pickering emulsion by coating with sodium alginate (SA). The effect of different mass ratios of CS and SA (1:0.5-1:2) on the microstructure, rheology and the stability of the emulsions were comprehensively evaluated by various methods such as optical microscope, scanning electron microscope, rheometer, and low-field nuclear magnetism. The multilayer emulsion with low content of SA (CS:SA = 1:0.5) presented bridging flocculation. If SA concentration was high (CS:SA = 1:1-1:2), the surface of the Pickering emulsion droplets was completely covered by the SA. At this time, multilayer emulsion droplets became stable due to strong electrostatic and/or steric repulsion. Too high SA concentration (CS:GA = 1:2) might also promote the accumulation of moisture. In addition, the CS/SA multilayer emulsion showed higher coalescence stability under different environmental treatments but its creaming stability and flocculation stability were still sensitive to pH (2, 4 and 10), temperature (4 °C and 80 °C) and ionic strength (300-500 mM). In all, the addition of the proper level SA (CS:GA = 1:1-1:2) could increase the stability of CS particle-stabilized Pickering emulsion.
Collapse
Affiliation(s)
- Yang Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
58
|
Liu Z, Hu M, Zhang S, Jiang L, Xie F, Li Y. Oil-in-water Pickering emulsion stabilization with oppositely charged polysaccharide particles: chitin nanocrystals/fucoidan complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3003-3012. [PMID: 33205457 DOI: 10.1002/jsfa.10934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chitin nanocrystals (ChN) are insoluble particles that can be used as stabilizers for Pickering emulsions. Their unique cationic properties and antibacterial activity have generated considerable interest among researchers. However, ChN have remained largely underexplored. Furthermore, the droplets of the emulsions stabilized by ChN are as large as 10-100 μm, and their physical stability requires further improvement. Some studies have shown that the spontaneous reaction of oppositely charged particles can effectively stabilize the emulsions. Positively charged ChN and negatively charged fucoidan (F) were therefore compounded to stabilize Pickering emulsions, and the stability of these emulsions was analyzed qualitatively. RESULTS The results showed that the composite particles comprising two polysaccharides in a mass ratio of 1:1 and at a pH of 2 (ChN1 -F1 -pH 2) possessed the lowest sulfate content (20.1%) and almost zero potential (-3 mV), indicating a high degree of neutralization of the positively charged amino group in ChN and the negatively charged sulfate group in F. Meanwhile, ChN1 -F1 -pH 2 displayed a dense network structure that improved the dispersibility and wettability (contact angle = 9.3°). Fourier transform infrared spectroscopy results confirmed that ChN and F were effectively combined through electrostatic interaction or neutralization to produce a polyelectrolyte complex. Furthermore, the particle size of the Pickering emulsion stabilized by ChN-F was significantly reduced, and the maximum size did not exceed 10 μm; the physical and storage stability also improved. The ChN1 -F1 -pH 2 emulsion presented excellent storage stability; in particular, the emulsions stabilized by ChN1 -F1 -pH 5 and ChN1 -F1 -pH 6 exhibited excellent flocculation stabilities. CONCLUSION The size of the emulsion droplets stabilized by the oppositely charged polysaccharide particles (ChN-F complexes) reduced significantly. Furthermore, by changing the mass ratio and pH, the microstructure and binding degree of the complexes can be adjusted, thereby promoting their adsorption on the oil-water interface and improving the stability of the Pickering emulsion. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhao Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
59
|
|
60
|
Effect of pH on okara protein-carboxymethyl cellulose interactions in aqueous solution and at oil-water interface. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
61
|
Cheng C, Wu Z, Wang Y, Chen J, Zhong Y, Liang R, Peng S, McClements DJ, Liu W. Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum Arabic complexes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
62
|
Yi J, Gan C, Wen Z, Fan Y, Wu X. Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for β-carotene protection and delivery. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106497] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
63
|
Li J, Zhai J, Dyett B, Yang Y, Drummond CJ, Conn CE. Effect of gum arabic or sodium alginate incorporation on the physicochemical and curcumin retention properties of liposomes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
64
|
He W, Xiao N, Zhao Y, Yao Y, Xu M, Du H, Wu N, Tu Y. Effect of polysaccharides on the functional properties of egg white protein: A review. J Food Sci 2021; 86:656-666. [DOI: 10.1111/1750-3841.15651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food Jiangxi Agricultural University Nanchang 330045 China
| | - Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food Jiangxi Agricultural University Nanchang 330045 China
| | - Yan Zhao
- Engineering Research Center of Biomass Conversion Ministry of Education Nanchang University Nanchang 330047 China
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food Jiangxi Agricultural University Nanchang 330045 China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food Jiangxi Agricultural University Nanchang 330045 China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food Jiangxi Agricultural University Nanchang 330045 China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food Jiangxi Agricultural University Nanchang 330045 China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food Jiangxi Agricultural University Nanchang 330045 China
| |
Collapse
|
65
|
Wang S, Yang J, Shao G, Liu J, Wang J, Yang L, Li J, Liu H, Zhu D, Li Y, Jiang L. pH-induced conformational changes and interfacial dilatational rheology of soy protein isolated/soy hull polysaccharide complex and its effects on emulsion stabilization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
66
|
Deng Z, Pei Y, Wang S, Zhou B, Hou X, Li J, Li B, Liang H. Designable Carboxymethylpachymaran/Metal Ion Architecture on Sunflower Sporopollenin Exine Capsules as Delivery Vehicles for Bioactive Macromolecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13990-14000. [PMID: 33174430 DOI: 10.1021/acs.jafc.0c05169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
There are multiple obstacles in the gastrointestinal tract (GIT) for oral administration of bioactive macromolecules. Here, we engineered an oral delivery vehicle (sporopollenin exine capsules with carboxymethylpachymaran (CMP)/metal ion modification) with targeted release based on food-grade ingredients and processing operations. Then, the interaction and binding mechanisms between CMP and metal ions in the vehicle were investigated. By using β-galactosidase (β-Gal) as a model protein, the systems were characterized for the surface morphology and monitored by the in vitro release profile of β-Gal. Notably, the CMP/metal ion systems not only markedly decreased the CMP dosage but also achieved a valid long-term release compared with the previously reported CMP system. Among all the systems, the CMP/3% AlCl3 system showed the best ability to control the release with the maximum residual activity of β-Gal at nearly 72% after 24 h of treatment. Subsequently, the interaction mechanism between CMP and metal ions within the system was characterized by the perspectives of microstructure, rheological properties, and spectroscopy characteristics. The results indicated that the low pH conditions are conducive to the further cross-linking of CMP and metal ions, resulting in a high gel strength and thus a dense structure, which can impact the controlled release of β-Gal in the GIT. Overall, the system may be utilized in the administration of medical and functional foods, specifically for the delivery of bioactive proteins via the oral route.
Collapse
Affiliation(s)
- Ziyu Deng
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| | - Yaqiong Pei
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Shishuai Wang
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education; National "111" Center for Cellular Regulation and Molecular Pharmaceutics; Hubei Key Laboratory of Industrial Microbiology; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Xinyao Hou
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| | - Jing Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| | - Bin Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
- Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430068, China
| | - Hongshan Liang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| |
Collapse
|
67
|
Xu YT, Yang T, Liu LL, Tang CH. One-step fabrication of multifunctional high internal phase pickering emulsion gels solely stabilized by a softer globular protein nanoparticle: S-Ovalbumin. J Colloid Interface Sci 2020; 580:515-527. [DOI: 10.1016/j.jcis.2020.07.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 01/04/2023]
|
68
|
Formation of egg yolk-modified starch complex and its stabilization effect on high internal phase emulsions. Carbohydr Polym 2020; 247:116726. [DOI: 10.1016/j.carbpol.2020.116726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
|
69
|
Peng D, Jin W, Arts M, Yang J, Li B, Sagis LM. Effect of CMC degree of substitution and gliadin/CMC ratio on surface rheology and foaming behavior of gliadin/CMC nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105955] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Zhao Q, Zaaboul F, Liu Y, Li J. Recent advances on protein‐based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Compr Rev Food Sci Food Saf 2020; 19:1934-1968. [DOI: 10.1111/1541-4337.12570] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Qiaoli Zhao
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Farah Zaaboul
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Yuanfa Liu
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Jinwei Li
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| |
Collapse
|