51
|
Advancements in the Use of Fermented Fruit Juices by Lactic Acid Bacteria as Functional Foods: Prospects and Challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum Application. FERMENTATION 2021. [DOI: 10.3390/fermentation8010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lactic acid fermentation of fresh fruit juices is a low-cost and sustainable process, that aims to preserve and even enhance the organoleptic and nutritional features of the raw matrices and extend their shelf life. Selected Lactic Acid Bacteria (LAB) were evaluated in the fermentation of various fruit juices, leading in some cases to fruit beverages, with enhanced nutritional and sensorial characteristics. Among LAB, Lactiplantibacillus (Lpb.) plantarum subsp. plantarum strains are quite interesting, regarding their application in the fermentation of a broad range of plant-derived substrates, such as vegetables and fruit juices, since they have genome plasticity and high versatility and flexibility. L. plantarum exhibits a remarkable portfolio of enzymes that make it very important and multi-functional in fruit juice fermentations. Therefore, L. plantarum has the potential for the production of various bioactive compounds, which enhance the nutritional value and the shelf life of the final product. In addition, L. plantarum can positively modify the flavor of fruit juices, leading to higher content of desirable volatile compounds. All these features are sought in the frame of this review, aiming at the potential and challenges of L. plantarum applications in the fermentation of fruit juices.
Collapse
|
52
|
Phenolics Profile, Antioxidant Activity and Flavor Volatiles of Pear Juice: Influence of Lactic Acid Fermentation Using Three Lactobacillus Strains in Monoculture and Binary Mixture. Foods 2021; 11:foods11010011. [PMID: 35010138 PMCID: PMC8750113 DOI: 10.3390/foods11010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the effects of lactic acid fermentation using three Lactobacillus strains (Lactiplantibacillus plantarum 90, Lactobacillus helveticus 76, and Lacticaseibacillus casei 37) in monoculture and binary mixture on phenolics profile, antioxidant activity and flavor volatiles in pear juice. Results showed that the colony counts of binary mixture were higher than monoculture in fermented pear juice. The total content of phenols was increased, while that of flavonoids was decreased significantly during fermentation (p < 0.05). Antioxidant activities in fermented peer juice including DPPH and ABTS radical scavenging abilities and ferric reducing antioxidant power (FRAP) were significantly improved (p < 0.05). Binary mixture of Lactiplantibacillus plantarum 90 and Lacticaseibacillus casei 37 fermentation exhibited strong DPPH radical scavenging ability, due to the increase in vanillic acid and arbutin contents. Furthermore, lactic acid fermentation improved the formation of alcohols, esters, acids and terpenoids, and reduced the contents of aldehydes and ketones. Thirty new compounds including 15 alcohols, seven esters, five acids, and three terpenoids were observed in fermented pear juice. Hierarchical cluster revealed that flavor volatiles in pear juice were improved dramatically by Lactobacillus strains fermentation, and there were dramatic differences between monoculture and binary mixture.
Collapse
|
53
|
Effects of Thermal and High-Pressure Processing on Quality Features and the Volatile Profiles of Cloudy Juices Obtained from Golden Delicious, Pinova, and Red Delicious Apple Cultivars. Foods 2021; 10:foods10123046. [PMID: 34945599 PMCID: PMC8701730 DOI: 10.3390/foods10123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, juices extracted from three apple cultivars (Golden Delicious, Pinova, and Red Delicious) were stabilized by means of thermal treatment (TT) and high-pressure processing (HPP, 600 MPa 3 min); pH, total titratable acidity, total soluble solids content, color, and viscosity, as well as volatile profile, were investigated. Qualitative characteristics (pH, titratable acidity, colorimetric parameters, viscosity, and volatile profile) results were significantly influenced by both cultivars and treatments; for example, juice viscosity greatly increased after HPP treatment for Golden Delicious, and after both TT and HPP for Pinova, while no influence of stabilization treatment was registered for Red Delicious juices. Regarding the volatile profile, for Golden Delicious cultivar, HPP treatment determined an increase in volatile compounds for most of the classes considered, leading to a supposed quality implementation. For the other two cultivars, the stabilization treatment that better preserved the volatile profile was the HPP one, even if the results were quite similar to the thermal treatment. Further studies are needed to evaluate different time/pressure combinations that could give better results, depending on the specific apple cultivar.
Collapse
|
54
|
Gottardi D, Siroli L, Braschi G, Rossi S, Ferioli F, Vannini L, Patrignani F, Lanciotti R. High-Pressure Homogenization and Biocontrol Agent as Innovative Approaches Increase Shelf Life and Functionality of Carrot Juice. Foods 2021; 10:2998. [PMID: 34945548 PMCID: PMC8701166 DOI: 10.3390/foods10122998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, application of high-pressure homogenization (HPH) treatments has been widely studied to improve shelf life and rheological and functional properties of vegetable and fruit juices. Another approach that has drawn the attention of researchers is the use of biocontrol cultures. Nevertheless, no data on their possible combined effect on fruit juices shelf life and functionality have been published yet. In this work, the microbial, organoleptic, and technological stability of extremely perishable carrot juice and its functionality were monitored for 12 and 7 days (stored at 4 and 10 °C, respectively) upon HPH treatment alone or in combination with a fermentation step using the biocontrol agent L. lactis LBG2. HPH treatment at 150 MPa for three passes followed by fermentation with L. lactis LBG2 extended the microbiological shelf life of the products of at least three and seven days when stored at 10 °C and 4 °C, respectively, compared to untreated or only HPH-treated samples. Moreover, the combined treatments determined a higher stability of pH and color values, and a better retention of β-carotene and lutein throughout the shelf-life period when compared to unfermented samples. Eventually, use of combined HPH and LBG2 resulted in the production of compounds having positive sensory impact on carrot juice.
Collapse
Affiliation(s)
- Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Federico Ferioli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| |
Collapse
|
55
|
Fonseca HC, Melo DDS, Ramos CL, Dias DR, Schwan RF. Lactiplantibacillus plantarum CCMA 0743 and Lacticaseibacillus paracasei subsp. paracasei LBC-81 metabolism during the single and mixed fermentation of tropical fruit juices. Braz J Microbiol 2021; 52:2307-2317. [PMID: 34626345 DOI: 10.1007/s42770-021-00628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022] Open
Abstract
Fruit juices have shown promising results as new probiotic carriers. This study aimed to evaluate acerola, jelly palm, and passion fruit juices as substrates for fermentation using Lactiplantibacillus plantarum CCMA 0743 and Lacticaseibacillus paracasei LBC-81 in single and mixed cultures. First, the juices were evaluated as substrate and selected based on bacterial growth performance during fermentation. Afterward, the impact of fermentation on sugars, organic acids, and bioactive compounds was also appraised. Phytochemical modification of three different juices fermented by lactic acid bacteria at 37 °C/24 h was evaluated. After 18 h of fermentation, passion fruit juice showed higher cell viable counts of single and mixed L. plantarum CCMA 0743 culture, above 9.00 Log CFU/mL, and pH between 4.07 and 4.10. Sugars consumption and organic acid production were influenced by juice composition and culture used. The mixed culture reduced the total sugars in the passion fruit juice by approximately 53.0% (8.51 g/L). Lactic acid was the main product of the sugars fermentation, with higher concentrations detected in passion fruit juice (8.39-11.23 g/L). Bioactive compounds were analyzed on the selected substrate. The fermentative process reduced antioxidant activity and carotenoid content. However, single L. plantarum CCMA 0743 culture increased the yellow flavonoid content of passion fruit juice by approximately 3.0 µg/mL. L. plantarum CCMA 0743 showed high and suitable cell, viable counts, to claimed probiotic products, increasing bioactive compounds in passion fruit juice. Therefore, this strain and passion fruit substrate showed attractive potential to produce alternative and functional fermented fruit beverages.
Collapse
Affiliation(s)
- Hugo Calixto Fonseca
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Dirceu de Sousa Melo
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Cíntia Lacerda Ramos
- Department of Basic Science, Federal University of Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
56
|
Insights into the improvement of bioactive phytochemicals, antioxidant activities and flavor profiles in Chinese wolfberry juice by select lactic acid bacteria. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
57
|
Wu B, Liu J, Yang W, Zhang Q, Yang Z, Liu H, Lv Z, Zhang C, Jiao Z. Nutritional and flavor properties of grape juice as affected by fermentation with lactic acid bacteria. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1942041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Baimin Wu
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiechao Liu
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenbo Yang
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Zhang
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Hui Liu
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenzhen Lv
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chunling Zhang
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhonggao Jiao
- Department of Fruit Processing and Preservation, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
58
|
Hadj Saadoun J, Ricci A, Cirlini M, Bancalari E, Bernini V, Galaverna G, Neviani E, Lazzi C. Production and recovery of volatile compounds from fermented fruit by-products with Lacticaseibacillus rhamnosus. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
59
|
Perjéssy J, Hegyi F, Nagy-Gasztonyi M, Zalán Z. Effect of the lactic acid fermentation by probiotic strains on the sour cherry juice and its bioactive compounds. FOOD SCI TECHNOL INT 2021; 28:408-420. [PMID: 34018830 DOI: 10.1177/10820132211018044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nowadays, demand for products which beyond the overall nutritional value have a feature that protects the consumers health, have increased. Several studies have proved fruit juices can become suitable carrier or medium for probiotic organisms. Therefore the aim of our study was to investigate the possibility of the probiotication of sour cherry juice by lactic acid fermentation with probiotic starter culture. In the fermentation 9 Lactobacillus strains were used and two cultivars of sour cherry as raw material. The pH adjustment and supplement of nutrients were necessary and to reach the recommended probiotic cell count we also investigated the effect of dilution of sour cherry juice. Due to the optimized combination of the pH adjustment, supplementation and dilution, the investigated strains reached the desired 9 log cfu mL-1 cell density in sour cherry juices, however a significant difference was observed between the number of viable cells of some Lactobacillus strains. In the Újfehértói fürtös sour cherry L. acidophilus La-5 (9.43 log cfu mL-1), while in the Petri species L. acidophilus 150 (9.60 log cfu mL-1) resulted in the highest probiotic cell number. The lactic acid fermentation can increase the phenolic compounds, but in case of the bioactive compounds significant differences were not general between the strains.
Collapse
Affiliation(s)
- Judit Perjéssy
- 407585National Agricultural Research and Innovation Centre, Food Science Research Institute, Budapest, Hungary
| | - Ferenc Hegyi
- 407585National Agricultural Research and Innovation Centre, Food Science Research Institute, Budapest, Hungary
| | - Magdolna Nagy-Gasztonyi
- 407585National Agricultural Research and Innovation Centre, Food Science Research Institute, Budapest, Hungary
| | - Zsolt Zalán
- 407585National Agricultural Research and Innovation Centre, Food Science Research Institute, Budapest, Hungary
| |
Collapse
|
60
|
Wang Z, Dou R, Yang R, Cai K, Li C, Li W. Changes in Phenols, Polysaccharides and Volatile Profiles of Noni ( Morinda citrifolia L.) Juice during Fermentation. Molecules 2021; 26:molecules26092604. [PMID: 33946973 PMCID: PMC8125466 DOI: 10.3390/molecules26092604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/26/2023] Open
Abstract
The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.
Collapse
Affiliation(s)
- Zhulin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Rong Dou
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Kun Cai
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
- Correspondence: ; Tel.: +86-898-6619-8861; Fax: +86-898-6619-3581
| |
Collapse
|
61
|
Exploitation of Sea Buckthorn Fruit for Novel Fermented Foods Production: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sea buckthorn fruit is abundant with essential nutrients and bioactive substances, yet it remains less sought after. Therefore, it is valuable to explore new ways of sea buckthorn fruit processing, which can boost consumer acceptance of sea buckthorn fruit and also lead to formulation of new functional foods. In the presented review, we summarize studies focused on development of foods utilizing sea buckthorn fruit or its components and bacterial food cultures. Firstly, we discuss the impact of malolactic fermentation on content and profile of organic acids and polyphenols of sea buckthorn fruit juice. During this process, changes in antioxidant and sensory properties are considerable. Secondly, we address the role of sea buckthorn fruit and its components in formulating novel probiotic dairy and non-dairy products. In this regard, a synergic effect of prebiotic material and probiotic bacteria against pathogens is distinguished. Overall, the potential of sea buckthorn fruit as a botanical ingredient for application in novel foods is highlighted.
Collapse
|
62
|
Probiotic Yoghurts with Sea Buckthorn, Elderberry, and Sloe Fruit Purees. Molecules 2021; 26:molecules26082345. [PMID: 33920663 PMCID: PMC8074036 DOI: 10.3390/molecules26082345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/02/2022] Open
Abstract
Elderberries, sea buckthorn, and sloe berries are fruits of wild-grown bushes, valued in folk medicine for their health-promoting properties but still rarely applied in food. The aim of the present study was to produce probiotic yoghurts with a 10% addition of sweetened purees prepared from elderberries (EPY), sea buckthorn (SBPY), and sloe berries (SPY) and to assess their chemical composition, acidity, content of polyphenols and anthocyanins, ferric reducing antioxidant power (FRAP) and antiradical power (ARP), level of starter microbiota, concentration of acetaldehyde and diacetyl, syneresis, instrumentally measured color and texture parameters, and sensory acceptance. The results were compared to those obtained for plain probiotic yoghurt (PPY) and the changes tracked during 1 month of cold storage at 2 week intervals. The addition of elderberry and sloe berries significantly increased the antioxidant capacity of probiotic yoghurts, probably due to a high content of polyphenols, especially anthocyanins. However, anthocyanins were more stable in the EPY when compared to the SPY. All yoghurt treatments were characterized by good sensory quality and viability of starter microorganisms, including probiotic strains during cold storage. Elderberries promoted the evolution of diacetyl in yoghurts during storage and, together with sloe berries, produced increased syneresis and the greatest changes in color profile compared to PPY.
Collapse
|
63
|
Hadj Saadoun J, Calani L, Cirlini M, Bernini V, Neviani E, Del Rio D, Galaverna G, Lazzi C. Effect of fermentation with single and co-culture of lactic acid bacteria on okara: evaluation of bioactive compounds and volatile profiles. Food Funct 2021; 12:3033-3043. [PMID: 33710215 DOI: 10.1039/d0fo02916e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Okara is the main soybean by-product resulting from the processing of soy milk and tofu. Despite being a product with a lot of potential and rich in many bioactive compounds such as polyphenols, it presents an unpleasant, rancid aroma. For this reason its use in the food industry is limited. In this study, we have reported the integral use of okara in a solid state fermentation process, conducted with wild strains of lactic acid bacteria, to evaluate the effect of bacterial metabolism on the volatile and polyphenolic profiles. Strains belonging to Lactobacillus acidophilus, Lacticaseibacillus rhamnosus and Pediococcus acidilactici species were used in monoculture and, for the first time, in co-culture. The results showed an improvement in the aromatic fraction showing a decrease in hexanal, responsible for off-flavour, and an increase in ketones with fruity and buttery notes in fermented okara. Polyphenols were also affected, and, in particular, a bioconversion of glucoside isoflavones to the aglycone forms was highlighted in all fermented substrates. In addition, the appearance of both phenyllactic and p-hydroxyphenyllactic acids as well as the increase in indole-3-lactic acid was observed for the first time upon okara fermentation. Overall, the co-culture appears to be the most promising for biovalorization of okara, thereby opening the possibility of its use in the development of functional ingredients.
Collapse
|
64
|
Wu J, Tian Y, Wu Z, Weng P, Zhang X. Effects of pretreatment with dimethyl dicarbonate on the quality characteristics of fermented Huyou juice and storage stability. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingyi Wu
- Department of Food Science and Engineering School of Food and Pharmaceutical Sciences Ningbo University Ningbo P.R. China
| | - Yuan Tian
- Department of Food Science and Engineering School of Food and Pharmaceutical Sciences Ningbo University Ningbo P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering School of Food and Pharmaceutical Sciences Ningbo University Ningbo P.R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province Ningbo University Ningbo P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering School of Food and Pharmaceutical Sciences Ningbo University Ningbo P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering School of Food and Pharmaceutical Sciences Ningbo University Ningbo P.R. China
| |
Collapse
|
65
|
Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021; 10:foods10040707. [PMID: 33810435 PMCID: PMC8066995 DOI: 10.3390/foods10040707] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Food waste and byproducts are generated along the entire food processing and storage chain. The large amount of waste deriving from the whole process represents not only a great economic loss but also an important ethical and environmental issue in terms of failure to recycle potentially reusable materials. New, clear strategies are needed to limit the amount of waste produced and, at the same time, promote its enhancement for further conversion and application to different industrial fields. This review gives an overview of the biological approaches used so far to exploit agri-food wastes and byproducts. The application of solid-state fermentation by different microorganisms (fungi, yeasts, bacteria) to produce several value-added products was analyzed, focusing on the exploitation of lactic acid bacteria as workhorses for the production of flavoring compounds.
Collapse
|
66
|
Montaño A, Cortés-Delgado A, Sánchez AH, Ruiz-Barba JL. Production of volatile compounds by wild-type yeasts in a natural olive-derived culture medium. Food Microbiol 2021; 98:103788. [PMID: 33875216 DOI: 10.1016/j.fm.2021.103788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The production of volatile compounds in naturally fermented green table olives from Manzanilla cultivar was investigated. A total of 62 volatile compounds were detected after 24 weeks of fermentation. To clarify the contribution of yeasts to the formation of these compounds, such microorganisms were isolated from the corresponding fermenting brines. Five major yeast strains were identified: Nakazawaea molendinolei NC168.1, Zygotorulaspora mrakii NC168.2, Pichia manshurica NC168.3, Candida adriatica NC168.4, and Candida boidinii NC168.5. When these yeasts were grown as pure cultures in an olive-derived culture medium, for 7 days at 25 °C, the number of volatiles produced ranged from 22 (P. manshurica NC168.3) to 60 (C. adriatica NC168.4). Contribution of each yeast strain to the qualitative volatile profile of fermenting brines ranged from 19% (P. manshurica NC168.3) to 48% (Z. mrakii NC168.2 and C. adriatica NC168.4). It was concluded that C. adriatica NC168.4 presented the best aromatic profile, being a solid candidate to be part of a novel starter culture to enhance the organoleptic properties of naturally fermented green table olives.
Collapse
Affiliation(s)
- Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| |
Collapse
|
67
|
Zhang Y, Liu W, Wei Z, Yin B, Man C, Jiang Y. Enhancement of functional characteristics of blueberry juice fermented by Lactobacillus plantarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
Markkinen N, Laaksonen O, Yang B. Impact of malolactic fermentation with Lactobacillus plantarum on volatile compounds of sea buckthorn juice. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractMalolactic fermentation using sea buckthorn (Hippophaë rhamnoides) juice as raw material was performed with six different strains of Lactobacillus plantarum. Increasing juice pH from 2.7 to 3.5 or adapting cells to low pH (i.e., acclimation) prior to inoculation allowed malolactic fermentation with all tested strains. Moreover, reducing pH of the growth medium from 6 to 4.5 with l-malate had little or no impact on biomass production. Volatile profile of sea buckthorn juice was analyzed with HS-SPME–GC–MS before and after fermentation. A total of 92 volatiles were tentatively identified and semi-quantified from sea buckthorn juice, majority of which were esters with fruity odor descriptors. Esters and terpenes were decreased in both inoculated and control juices during incubation. Microbial activity increased the levels of acetic acid (vinegar like), free fatty acids (cheese like), ketones (buttery like), and alcohols with fruity descriptors. Conversely, aldehydes associated with “green” aroma were decreased as a result of fermentation. Juices fermented with DSM 1055 had the highest acid and alcohol content, while fermentation with DSM 13273 resulted in the highest content of ketones. Compared to inoculation with other strains, fermentation with strains DSM 16365 and DSM 100813 resulted in rapid malolactic fermentation, less production of volatile acids, and lower loss of esters and terpenes important for natural sea buckthorn flavor.
Collapse
|
69
|
Influence of sea buckthorn juice addition on the growth of microbial food cultures. ACTA CHIMICA SLOVACA 2021. [DOI: 10.2478/acs-2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the article was to investigate the effect of sea buckthorn juice addition on the growth of microbial cultures in growth medium and juice mixtures. Pure sea buckthorn juice was found to inhibit the growth of all 11 monitored microbial cultures. Lactobacillus plantarum CCM 7039, Lactobacillus plantarum K816, Lactobacillus brevis CCM 1815 and, to a lesser extent, the probiotic strain Lactobacillus rhamnosus GG, grew in a growth medium containing a 25 % addition of sea buckthorn juice. Lactobacillus plantarum K816 and Lactobacillus brevis CCM 1815 grew better in this mixture than in pure growth medium. Moreover, we focused on finding a suitable ratio of sea buckthorn and apple juice for Lactobacillus plantarum CCM 7039, leading to malolactic fermentation, which results in an increase in the pH value and an improvement in the sensory properties of juices. The intention was to incorporate the highest possible addition of sea buckthorn juice while maintaining the viability of Lactobacillus plantarum CCM 7039 for malolactic fermentation to occur. The best results were achieved using 40 % sea buckthorn juice. Practical application of the results points to the possibility of preparing a fermented fruit beverage and a dairy product containing sea buckthorn juice. The results of this work extend the current options of sea buckthorn juice processing increasing thus the consumption of healthy juice.
Collapse
|
70
|
Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes (Basel) 2021. [DOI: 10.3390/pr9020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As an easily adapted culture, with overloaded production in some parts of the globe, apples and their by-products are being redirected to pharmaceutical, canning and beverages industries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioavailability of bioactive compounds found in apple, by impacting, through a high degree of changes, the product’s properties, including composition and health-promoting attributes, as well as their sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and healthy products by the consumers. Recently, contributions to human health, both in vivo and in vitro studies, of non-alcoholic fermented apple-based products have been described. This review highlighted the advances in the process optimization of apple-based products considering vinegar, cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on physical-chemical, nutritional and sensory profiles of these products are also presented. Additionally, the harmful effects of toxic compounds and strategies to limit their content in cider and apple spirits are illustrated. New trends of fermented apple-based products applicability in tangential industries are summarized.
Collapse
|
71
|
Li W, Shi C, Guang J, Ge F, Yan S. Development of Chinese chestnut whiskey: yeast strains isolation, fermentation system optimization, and scale-up fermentation. AMB Express 2021; 11:17. [PMID: 33432375 PMCID: PMC7801535 DOI: 10.1186/s13568-020-01175-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/28/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, we used Chinese chestnut as the main raw material to develop a novel type of whiskey. First, 16 yeasts were isolated and identified for producing aroma using olfactory plate assay. Of these, we screened nine yeast strains based on their fermentation capacity, aroma profile, and sensory evaluation. The results demonstrated the combination of strains HN006 (Saccharomyces cerevisiae) and HN010 (Wickerhamomyces anomalus) provided satisfactory wine fermentation with an interesting flavor profile, as strain HN010 was highly aromatic and had elevated sensory scores with comparatively low ethanol yield, while strain HN006 had a poor flavor profile but produced the largest amount of ethanol. Subsequently, we co-cultured strains HN006 and HN010 to optimize the fermentation system. The results revealed the following optimum parameters: a mixed inoculum of 6% (v/v) at an HN006/HN010 ratio of 1:2 (v/v), a raw material ratio of 5:3:2 (chestnut: malt: glutinous rice), and yeast extract concentration of 6 g/L. Additionally, this fermentation system was successfully scaled-up to a 1000 L pilot-scale system. The results of this study showed that strains HN006 and HN010 could be used as alternatives for whiskey fermentation, as well as provided a generalized experimental scheme to assess other microorganisms.
Collapse
|
72
|
Wang M, Ouyang X, Liu Y, Liu Y, Cheng L, Wang C, Zhu B, Zhang B. Comparison of nutrients and microbial density in goji berry juice during lactic acid fermentation using four lactic acid bacteria strains. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mengze Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Xiaoyu Ouyang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Yaran Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Yue Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Baoqing Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Bolin Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
73
|
GUEDES CKRDM, GUEDES AFLDM, SILVA JRD, SILVA EBBD, SANTOS ECMD, STAMFORD TCM, STAMFORD TLM. Development of vegetal probiotic beverage of passion fruit (Passiflora edulis Sims), yam (Dioscorea cayenensis) and Lacticaseibacillus casei. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.66120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
74
|
Martelli F, Cirlini M, Lazzi C, Neviani E, Bernini V. Solid-State Fermentation of Arthrospira platensis to Implement New Food Products: Evaluation of Stabilization Treatments and Bacterial Growth on the Volatile Fraction. Foods 2020; 10:E67. [PMID: 33396844 PMCID: PMC7823266 DOI: 10.3390/foods10010067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022] Open
Abstract
Arthrospira platensis is a cyanobacterium widely used in food formulation and mainly consumed as a food supplement because of its high amount of proteins, vitamins and minerals. Different probiotic food supplements are present in the market, and a lactic acid fermented food product like dried spirulina could be useful not only to introduce lactic acid bacteria (LAB) with beneficial effects to the diet of consumers, but also to improve or change the aromatic profile of the substrate. Therefore, the aim of this study was the evaluation of lactic acid fermentation of A. platensis biomass, focusing on the consequent changes in the aromatic profile. For this purpose, two different stabilization treatments (UV light treatment and sterilization) were applied prior to fermentation with two LAB strains, Lacticaseibacillus casei 2240 and Lacticaseibacillus rhamnosus GG. The biomass proved to be a suitable matrix for solid-state fermentation, showing a LAB growth of more than 2 log CFU/g in 48 h. The fermentation process was also useful for off-flavor reduction. In particular, the fermentation process significantly influenced the concentration of those compounds responsible for aldehydic/ethereal, buttery/waxy (acetoin and diacetyl), alkane and fermented aromatic notes (isoamyl alcohol). The heat treatment of the matrix, in addition to guaranteed safety for consumers, led to an improved aroma after fermentation. In conclusion, a fermented spirulina powder with a different aromatic profile was obtained with the applied heat treatment. Fermentation with lactic acid bacteria can be an interesting tool to obtain cyanobacterial biomasses with more pleasant sensory properties for potential use in food formulations.
Collapse
Affiliation(s)
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (F.M.); (C.L.); (E.N.); (V.B.)
| | | | | | | |
Collapse
|
75
|
Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res Int 2020; 140:109854. [PMID: 33648172 DOI: 10.1016/j.foodres.2020.109854] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Current awareness about the benefits of a balanced diet supports ongoing trends in humans towards a healthier diet. This review provides an overview of fruits and fruit-by products as sources of bioactive compounds and their extraction techniques, and the use of lactic acid fermentation of fruit juices to increase their functionality. Fruit matrices emerge as a technological alternative to be fermented by autochthonous or allochthonous lactic acid bacteria (LAB such as Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and other Lactobacillus species), and also as probiotic vehicles. During fermentation, microbial enzymes act on several fruit phytochemicals producing new derived compounds with impact on the aroma and the functionality of the fermented drinks. Moreover, fermentation significantly reduces the sugar content improving their nutritional value and extending the shelf-life of fruit-based beverages. The generation of new probiotic beverages as alternatives to consumers with intolerance to lactose or with vegan or vegetarian diets is promising for the worldwide functional food market. An updated overview on the current knowledge of the use of fruit matrices to be fermented by LAB and the interaction between strains and the fruit phytochemical compounds to generate new functional foods as well as their future perspectives in association with the application of nanotechnology techniques are presented in this review.
Collapse
|
76
|
Beghè D, Cirlini M, Beneventi E, Miroslav Č, Tatjana P, Ganino T, Petruccelli R, Dall’Asta C. Volatile profile of Italian and Montenegrine pomegranate juices for geographical origin classification. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03619-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
77
|
Yan S, Liu H, Zhang J, Tong Q. Lactobacillus delbrueckii is the key functional microorganism of natural fermented tofu sour water involved in the traditional coagulation of Chinese Huizhou Mao-tofu. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
78
|
Effect of the apple cultivar on cloudy apple juice fermented by a mixture of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. Food Chem 2020; 340:127922. [PMID: 32889211 DOI: 10.1016/j.foodchem.2020.127922] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/15/2020] [Accepted: 08/22/2020] [Indexed: 11/24/2022]
Abstract
This study aimed to evaluate the fermentation performance of a mixture of Lactobacillus spp. in cloudy apple juices from nine cultivars. The results showed that cultivar influenced most the properties of the fermented cloudy apple juice. The fermented cloudy apple juices made from Changfu had the highest viable bacterial count and acetic acid contents (6.37 × 108 CFU/mL and 2.67 mg/mL, respectively). It also had higher sensory score, second only to Huaniu. The highest total sugar consumption, utilising fructose, glucose, and sucrose (33.07 mg/mL), was seen with Golden Delicious. Qinguan fermented cloudy apple juice had the highest contents of lactic acid (6.74 mg/mL) and total esters (921.36 μg/L); d-limonene also detected in this fermented cloudy apple juice. Of the nine cultivars examined in this study, Changfu, Qinguan, and Golden Delicious were the most suitable for producing fermented cloudy apple juice with better taste, higher viable count and more intense aroma.
Collapse
|
79
|
Li T, Jiang T, Liu N, Wu C, Xu H, Lei H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem 2020; 339:127859. [PMID: 32829244 DOI: 10.1016/j.foodchem.2020.127859] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the effects of four commercial lactic acid bacteria (LAB), namely L. acidophilus, L. casei, L. helveticus and L. plantarum, on the phenolic profiles, antioxidant capacities and flavor profiles of jujube juices prepared from two crop varieties (Ziziphus Jujuba cv. Muzao and Hetian). Results showed that both jujube juices were excellent matrices for LAB growth with more than 11 log CFU/mL of viable counts at the end of fermentation. LAB fermentation dramatically increased total phenolic content, while decreased total flavonoid content of jujube juices. However, antioxidant capacities based on DPPH and FRAP methods were significantly improved by LAB fermentation and positively correlated with caffeic acid and rutin contents. Furthermore, a total of 74 volatile compounds were identified and increased in total content by LAB fermentation, which resulted in 22 and 19 new flavor volatiles formation in Muzao juice and Hetian juice, respectively.
Collapse
Affiliation(s)
- Tianlin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Tian Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
80
|
Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, Ji Y, Guan Y, Feng K. Effect of salt concentration on microbial communities, physicochemical properties and metabolite profile during spontaneous fermentation of Chinese northeast sauerkraut. J Appl Microbiol 2020; 129:1458-1471. [PMID: 32677269 DOI: 10.1111/jam.14786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to study the effects of salt concentrations on the microbial communities, physicochemical properties, metabolome profiles and sensory characteristics during the fermentation of traditional northeast sauerkraut. METHODS AND RESULTS Northeast sauerkraut was spontaneously fermented under four salt concentrations (0·5, 1·5, 2·5 and 3·5%, w/w). The result of microbiological analysis showed that the population of lactic acid bacteria in 2·5%-salted sauerkraut was significantly higher than that in the other samples. Correspondingly, the speed of decrease in pH and accumulation of acids were the highest in 2·5%-salted sauerkraut. The glucose (analysed by HPLC) in 2·5%-salted sauerkraut was consumed more completely to produce higher levels of organic acids compared to those in the other samples. Principle component analysis showed clear differences in the metabolites of sauerkraut according to different salt concentrations. A higher level of volatiles (detected by HS-SPME/GC-MS) was identified in 2·5%-salted sauerkraut, and sensory evaluation demonstrated that 2·5%-salted sauerkraut had the best sensory characteristics. CONCLUSION The best quality of sauerkraut was obtained from fermented under 2·5% salt concentration. SIGNIFICANCE AND IMPACT OF THE STUDY This study facilitated the understanding of the effects of salt on the sauerkraut fermentation and may be useful for developing the quality of sauerkraut.
Collapse
Affiliation(s)
- X Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - W Hu
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - Z Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - A Jiang
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - X Yang
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - G Saren
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - Y Ji
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - Y Guan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - K Feng
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| |
Collapse
|
81
|
Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, Ji Y, Guan Y, Feng K. Microbial Community Dynamics and Metabolome Changes During Spontaneous Fermentation of Northeast Sauerkraut From Different Households. Front Microbiol 2020; 11:1878. [PMID: 32849461 PMCID: PMC7419431 DOI: 10.3389/fmicb.2020.01878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Sauerkraut, one of the most popular traditional fermented vegetable foods in northern China, has been widely consumed for thousands of years. In this study, the physicochemical characteristics, microbial composition and succession, and metabolome profile were elucidated during the fermentation of traditional northeast sauerkraut sampled from different households. The microbial community structure as determined by high-throughput sequencing (HTS) technology demonstrated that Firmicutes and Proteobacteria were the predominant phyla and Weissella was the most abundant genus in all samples. Except for Weissella, higher relative abundance of Clostridium was observed in #1 sauerkraut, Clostridium and Enterobacter in #2 sauerkraut, and Lactobacillus in #3 sauerkraut, respectively. Meanwhile, Principal component analysis (PCA) revealed significant variances in the volatilome profile among different homemade sauerkraut. Acids and lactones were dominant in the #1 sauerkraut. The #2 sauerkraut had significantly higher contents of alcohols, aldehydes, esters, sulfides, and free amino acids (FAAs). In comparison, higher contents of terpenes and nitriles were found in the #3 sauerkraut. Furthermore, the potential correlations between the microbiota and volatilome profile were explored based on Spearman’s correlation analysis. Positive correlations were found between Clostridium, Enterobacter, Lactobacillus, Leuconostoc, Weissella and most volatile compounds. Pseudomonas, Chloroplast, Rhizobium, Aureimonas, and Sphingomonas were negatively correlated with volatile compounds in sauerkraut. This study provided a comprehensive picture of the dynamics of microbiota and metabolites profile during the fermentation of different homemade northeast sauerkraut. The elucidation of correlation between microbiota and volatile compounds is helpful for guiding future improvement of the fermentation process and manufacturing high-quality sauerkraut.
Collapse
Affiliation(s)
- Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Xiangyan Yang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Gaowa Saren
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| |
Collapse
|
82
|
Development of Lactic Acid-Fermented Tomato Products. Microorganisms 2020; 8:microorganisms8081192. [PMID: 32764368 PMCID: PMC7465655 DOI: 10.3390/microorganisms8081192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND lactic acid fermentation was recently proposed to produce fruit and vegetable beverages with high nutritional value. In this study, a wide screening of strains and fermentation parameters was carried out to develop fermented tomato-based drinks containing viable cells and potentially bioactive metabolites. METHODS six different products (three extracts, two tomato juices and one tomato puree) were used as substrate for fermentation. After preliminary testing, eight fermentation conditions for each tested product were selected. The final products were stabilized with pasteurization or refrigeration and further characterized in terms of (i) antioxidant activity and (ii) total polyphenols. RESULTS selected strains were able to grow in almost all tomato-based products except for one extract. Antioxidant activity and total phenolic content depend on products and fermentation conditions used and, except for tomato puree, an overall increase was observed. The best nutritional profile was reached in fermented samples stored at refrigerated temperature without thermal stabilization. CONCLUSION an integrated data vision allowed to choose, for each substrate, the best combination of strains to produce novel fermented tomato-based products with different application perspectives.
Collapse
|
83
|
Improving the lipid oxidation in pork fat processing for Chi-aroma Baijiu through pretreatments and segmented soaking with liquor. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
84
|
Yang X, Hu W, Xiu Z, Jiang A, Yang X, Sarengaowa, Ji Y, Guan Y, Feng K. Microbial dynamics and volatilome profiles during the fermentation of Chinese northeast sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under different salt concentrations. Food Res Int 2020; 130:108926. [DOI: 10.1016/j.foodres.2019.108926] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 11/29/2022]
|
85
|
Effects of Dietary Supplementation with Combination of Tributyrin and Essential Oil on Gut Health and Microbiota of Weaned Piglets. Animals (Basel) 2020; 10:ani10020180. [PMID: 31973120 PMCID: PMC7070613 DOI: 10.3390/ani10020180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The dietary inclusion of the combination of tributyrin with either oregano or methyl salicylate as a substitution to antibiotics improved intestinal morphological structure of weaned piglets and resulted in major changes in the profiles of intestine microbiota and metabolites, which exerted beneficial effects on intestinal health of piglets. Our study indicated that the combination of tributyrate with oregano or methyl salicylate could be used as an alternative feed additive to the antibiotics. Abstract The aim of this study was to determine the effects of dietary inclusion of the combination of tributyrin with oregano or methyl salicylate as a substitute to antibiotics on gut health and microbiota of piglets. A total of 48 weaned crossbred piglets (Duroc × Large White × Landrace, 8.79 ± 0.97 kg, 21 ± 1 d) were randomly allocated to four experimental groups and fed for 4 weeks: the basal diet (Con); the control plus antibiotics (AB); the control plus oregano and tributyrin (OT); and the control plus methyl salicylate and tributyrin (MT). Although a numerical improvement on feed intake, weight gain and feed conversion ratio was observed in the OT and MT as well as the AB group, the difference was not significant (p > 0.05). The OT and MT groups were larger in villus height in the duodenum compared to the Con (p < 0.05), and were larger in relative abundance of Firmicutes/Bacaeroides in the intestine compared to Con and AB groups (p < 0.01). The amount of major different metabolites was 6, 8 and 8 for the AB, OT and MT groups when compared to the Con, respectively. In conclusion, as a substitute for antibiotics the inclusion of the combination of tributyrin with either oregano or methyl salicylate to the diet of weaned piglets improved the intestinal morphological structure and altered intestinal microbiota and metabolites, which were beneficial to the animal health.
Collapse
|
86
|
Spaggiari M, Ricci A, Calani L, Bresciani L, Neviani E, Dall’Asta C, Lazzi C, Galaverna G. Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
87
|
Application of lactic acid fermentation to elderberry juice: Changes in acidic and glucidic fractions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108779] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
88
|
Ricci A, Diaz AB, Caro I, Bernini V, Galaverna G, Lazzi C, Blandino A. Orange peels: from by-product to resource through lactic acid fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6761-6767. [PMID: 31353470 DOI: 10.1002/jsfa.9958] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Considering the large amounts of by-products derived from orange processing, which are generally discarded, the present study aimed to explore the feasibility of using orange peel for lactic acid production in solid state fermentation. RESULTS Different species of lactic acid bacteria were employed, singly and in co-culture, to evaluate their ability to ferment orange peel and produce lactic acid. Among the single cultures tested, Lactobacillus casei 2246 was the most efficient strain, reaching the highest concentration of lactic acid (209.65 g kg-1 ) and yield (0.88 g g-1 ). The use of Lactobacillus plantarum 285 and Lactobacillus paracasei 4186 in co-culture produced a comparable amount of lactic acid, showing a better performance than the same strains in single cultures. CONCLUSION Orange peels represent a suitable raw material for solid state fermentation employing lactic acid bacteria. Lactic acid was obtained that consumed the most of sugars available, leading to high yields. Despite all the strains tested showing the same growth ability, different peculiarities in lactic acid production were revealed, dependent on the species/strains, suggesting the relevance of strain selection. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ana Belen Diaz
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| | - Ildefonso Caro
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| | | | | | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ana Blandino
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| |
Collapse
|
89
|
Alcántara-Zavala AE, Figueroa-Cárdenas JDD, Morales-Sánchez E, Aldrete-Tapia JA, Arvizu-Medrano SM, Martínez-Flores HE. Application of ohmic heating to extend shelf life and retain the physicochemical, microbiological, and sensory properties of pulque. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
90
|
Expression of DinJ-YafQ System of Lactobacillus casei Group Strains in Response to Food Processing Stresses. Microorganisms 2019; 7:microorganisms7100438. [PMID: 31614503 PMCID: PMC6843646 DOI: 10.3390/microorganisms7100438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widely distributed in bacterial genomes and are involved in the adaptive response of microorganisms to stress conditions. Few studies have addressed TA systems in Lactobacillus and their role in the adaptation to food environments and processes. In this work, for six strains belonging to L. casei group isolated from dairy products, the expression of DinJ-YafQ TA system was investigated after exposure to various food-related stresses (nutrient starvation, low pH, high salt concentration, oxidative stress, and high temperature), as well as to the presence of antibiotics. In particular, culturability and DinJ-YafQ expression were evaluated for all strains and conditions by plate counts and RT qPCR. Among all the food-related stress conditions, only thermal stress was capable to significantly affect culturability. Furthermore, exposure to ampicillin significantly decreased the culturability of two L. rhamnosus strains. The regulation of DinJ-YafQ TA system resulted strain-specific; however, high temperature was the most significant stress condition able to modulate DinJ-YafQ expression. The increasing knowledge about TA systems activity and regulation might offer new perspectives to understand the mechanisms that L. casei group strains exploit to adapt to different niches or production processes.
Collapse
|
91
|
Chen Y, Ouyang X, Laaksonen O, Liu X, Shao Y, Zhao H, Zhang B, Zhu B. Effect of Lactobacillus acidophilus, Oenococcus oeni, and Lactobacillus brevis on Composition of Bog Bilberry Juice. Foods 2019; 8:foods8100430. [PMID: 31546648 PMCID: PMC6835820 DOI: 10.3390/foods8100430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 11/21/2022] Open
Abstract
This study investigated the impact of Lactobacillus acidophilus NCFM, Oenococcus oeni Viniflora® Oenos and Lactobacillus brevis CICC 6239 on bog bilberry juice with a considerably low pH and rich in anthocyanins content. Moreover, the effects of the strains on the composition of phenolic compounds, amino acids, ammonium ion, biogenic amines, reduced sugars, organic acids, and color parameters of the juice were studied. All three bacteria consumed sugars and amino acids but exhibited different growth patterns. Lactic acid was detected only in L. acidophilus inoculated juice. The content of the phenolic compounds, especially anthocyanins, decreased in juice after inoculation. The CIELa*b* analysis indicated that the juice inoculated with L. acidophilus and O. oeni showed a decrease on a* and b* (less red and yellow) but an increase on L (more lightness), whereas the color attributes of L. brevis inoculated juice did not significantly change. Based on this study, L. brevis showed the most optimal performance in the juice due to its better adaptability and fewer effects on the appearance of juice. This study provided a useful reference on the metabolism of lactic acid bacteria in low pH juice and the evolution of primary and secondary nutrients in juice after inoculated with lactic acid bacteria.
Collapse
Affiliation(s)
- Yuqi Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaoyu Ouyang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Xiaoyu Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Yuan Shao
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Hongfei Zhao
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
92
|
Yang X, Hu W, Jiang A, Xiu Z, Ji Y, Guan Y, Sarengaowa, Yang X. Effect of salt concentration on quality of Chinese northeast sauerkraut fermented by Leuconostoc mesenteroides and Lactobacillus plantarum. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100421] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
93
|
Zhu Y, Wang Z, Zhang L. Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
94
|
Ricci A, Cirlini M, Guido A, Liberatore CM, Ganino T, Lazzi C, Chiancone B. From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring. Foods 2019; 8:foods8080309. [PMID: 31374955 PMCID: PMC6723389 DOI: 10.3390/foods8080309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 11/22/2022] Open
Abstract
One of the main struggles of the large-scale apple processing industry is pomace disposal. One solution for this problem is to convert this waste into a resource. Apple pomace could be used as a substrate for lactic acid bacteria and could induce the formation of a more complex aroma profile, making this fermented product an innovative aromatizer for alcoholic beverages, such as beer. In this study, for the first time, the effect of lacto-fermented apple pomace addition in beer was evaluated. Three bacterial strains (Lactobacillus rhamnosus 1473 and 1019, and L. casei 2246) were tested for apple pomace fermentation, and L. rhamnosus 1473 was the strain that best modified the aromatic profile. The addition of fermented apple pomace to beer increased the complexity of the aroma profile, demonstrating the potential of this byproduct as an aromatizer in the alcoholic beverage industry.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Angela Guido
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Claudia Maria Liberatore
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Benedetta Chiancone
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
95
|
Gao H, Wen JJ, Hu JL, Nie QX, Chen HH, Nie SP, Xiong T, Xie MY. Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
96
|
Liu S, Laaksonen O, Yang B. Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiol 2019; 80:25-39. [DOI: 10.1016/j.fm.2018.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 01/25/2023]
|
97
|
Siroli L, Camprini L, Pisano MB, Patrignani F, Lanciotti R. Volatile Molecule Profiles and Anti- Listeria monocytogenes Activity of Nisin Producers Lactococcus lactis Strains in Vegetable Drinks. Front Microbiol 2019; 10:563. [PMID: 30972045 PMCID: PMC6443959 DOI: 10.3389/fmicb.2019.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/05/2019] [Indexed: 12/03/2022] Open
Abstract
This work aimed to evaluate the potential of 15 nisin producing Lactococcus lactis strains, isolated from dairy products, for the fermentation of soymilk and carrot juice. In particular, the acidification and the production of nisin in the food matrices were recorded. Moreover, three strains (LBG2, FBG1P, and 3LC39), that showed the most promising results were further scrutinized for their anti-Listeria monocytogenes activity and volatile molecules profile during fermentation of soymilk and carrot juice. Lactococcus lactis strains LBG2, FBG1P, and 3LC39 resulted the most interesting ones, showing rapid growth and acidification on both food matrices. The higher amounts of nisin were detected in soymilk samples fermented by the strain LBG2 after 24 and 48 h (26.4 mg/L). Furthermore, the rapid acidification combined with the production of nisin resulted in a strong anti-Listeria activity, reducing the pathogen loads below the detection limit, in carrot juice samples fermented by the strains LBG2 and FBG1P and in soymilk by the strain LBG2. The fermentation increased the presence of volatile molecules such as aldehydes and ketones with a positive impact on the organoleptic profile of both the fermented products. These results highlighted the interesting potential of three nisin producing L. lactis strains for the production of fermented carrot juice and soymilk. In fact, the fermentation by lactic acid bacteria, combined or not with other mild technologies, represents a good strategy for the microbiological stabilization of these products. Furthermore, the increase of molecules with a positive sensory impact, such as aldehydes and ketones, in the fermented products suggests a possible improvement of their organoleptic characteristics.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Lucia Camprini
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Maria Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
98
|
Ricci A, Cirlini M, Calani L, Bernini V, Neviani E, Del Rio D, Galaverna G, Lazzi C. In vitro metabolism of elderberry juice polyphenols by lactic acid bacteria. Food Chem 2019; 276:692-699. [DOI: 10.1016/j.foodchem.2018.10.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
99
|
Chen C, Lu Y, Yu H, Chen Z, Tian H. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2018.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
100
|
Use of Dairy and Plant-Derived Lactobacilli as Starters for Cherry Juice Fermentation. Nutrients 2019; 11:nu11020213. [PMID: 30678152 PMCID: PMC6412669 DOI: 10.3390/nu11020213] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Lactic acid bacteria (LAB) exhibit a great biodiversity that can be exploited for different purposes, such as to enhance flavours or metabolize phenolic compounds. In the present study, the use of dairy and plant-derived LAB strains to perform cherry juice fermentation is reported. Methods: The growth ability of Lactobacillus plantarum, Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus was studied in cherry juice. Profiling of sugars, organic acids and volatile compounds was performed by GC-MS (Gas Chromatography-Mass Spectrometry), while the phenolic fraction was characterized using UHPLC (Ultra High Performance Liquid Chromatography) equipped with a linear ion trap-mass spectrometer. Results: Sucrose significantly decreased in all fermented samples as well as malic acid, converted to lactic acid by malolactic fermentation. The total amount of volatile compounds increased. Specifically, propyl acetate, an ester with fruit notes, reached the highest concentration in L. rhamnosus and L. paracasei (dairy strains) fermented juices. Phenolics were extensively metabolized: caffeic acid was converted into dihydrocaffeic acid, p-coumaric acid into 4-ethylphenol and phenyllactic acid was produced. Conclusion: Lactic acid fermentation confer fruit notes to the juice and enhance phenyllactic acids, especially employing dairy strains (L. rhamnosus and L. paracasei). The level of dihydrocaffeic acid, a compound with putative biological activity was also increased (in particular with L. plantarum).
Collapse
|