51
|
Hu D, Zhang Z, Yuan L, Li W, Guo Y, Zhang R, Yang X, Peng H. Load phycocyanin to achieve in vivo imaging of casein-porous starch microgels induced by ultra-high-pressure homogenization. Int J Biol Macromol 2021; 193:127-136. [PMID: 34699889 DOI: 10.1016/j.ijbiomac.2021.10.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
Traditional bioactive substances are often limited in practical application due to their poor stability and low solubility. Therefore, it is imperative to develop biocompatible high loading microgel carriers. In this study, a novel type of casein-porous starch microgel was prepared under ultra-high-pressure homogenization, by using porous starch with the honeycomb three-dimensional network porous structure. Molecular interaction force analysis and thermodynamic analysis showed that electrostatic interaction played a major role in the formation of microgels. Circular dichroism and Fourier transform infrared spectroscopy showed that homogenization and pH were the main factors, which affected the formation and structural stability of microgels. Compared with casein-glutinous rice starch microgels, the encapsulation efficiency and loading capacity of phycocyanin in casein-porous starch microgels were increased by 77.27% and 135.10%, respectively. Thus, casein-porous starch microgels could not only achieve a sustained release effect, but also effectively transport phycocyanin to the gastrointestinal tract of zebrafish, while achieving good fluorescence imaging in vivo. Ultimately, the prepared casein-porous starch microgels could enrich the nanocarriers material, and contribute to the research of safe and effective fluorescent imaging materials.
Collapse
Affiliation(s)
- Dan Hu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Wenjun Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Yurong Guo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
52
|
Cheng M, Dou H. Nano‐assemblies based on biomacromolecules to overcome cancer drug resistance. POLYM INT 2021. [DOI: 10.1002/pi.6310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
53
|
Akhtar A, Aslam S, Khan S, McClements DJ, Khalid N, Maqsood S. Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010-2021). Crit Rev Food Sci Nutr 2021; 63:2719-2737. [PMID: 34565242 DOI: 10.1080/10408398.2021.1980370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Consumer awareness of the relationship between health and nutrition has caused a substantial increase in the demand for nutraceuticals and functional foods containing bioactive compounds (BACs) with potential health benefits. However, the direct incorporation of many BACs into commercial food and beverage products is challenging because of their poor matrix compatibility, chemical instability, low bioavailability, or adverse impact on food quality. Advanced encapsulation technologies are therefore being employed to overcome these problems. In this article, we focus on the utilization of plant and animal derived proteins to fabricate micro and nano-particles that can be used for the oral delivery of BACs such as omega-3 oils, vitamins and nutraceuticals. This review comprehensively discusses different methods being implemented for fabrications of protein-based delivery vehicles, types of proteins used, and their compatibility for the purpose. Finally, some of the challenges and limitations of different protein matrices for encapsulation of BACs are deliberated upon. Various approaches have been developed for the fabrication of protein-based microparticles and nanoparticles, including injection-gelation, controlled denaturation, and antisolvent precipitation methods. These methods can be used to construct particle-based delivery systems with different compositions, sizes, surface hydrophobicity, and electrical characteristics, thereby enabling them to be used in a wide range of applications.
Collapse
Affiliation(s)
- Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sadia Aslam
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|