51
|
Malfatti MC, Balachander S, Antoniali G, Koh KD, Saint-Pierre C, Gasparutto D, Chon H, Crouch RJ, Storici F, Tell G. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res 2017; 45:11193-11212. [PMID: 28977421 PMCID: PMC5737539 DOI: 10.1093/nar/gkx723] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Kyung Duk Koh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,University of California, San Francisco, UCSF, School of Medicine, San Francisco, CA, USA
| | - Christine Saint-Pierre
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Didier Gasparutto
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Hyongi Chon
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
52
|
Choi YJ, Gibala KS, Ayele T, Deventer KV, Resendiz MJE. Biophysical properties, thermal stability and functional impact of 8-oxo-7,8-dihydroguanine on oligonucleotides of RNA-a study of duplex, hairpins and the aptamer for preQ1 as models. Nucleic Acids Res 2017; 45:2099-2111. [PMID: 28426093 PMCID: PMC5389535 DOI: 10.1093/nar/gkw885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023] Open
Abstract
A better understanding of the effects that oxidative lesions have on RNA is of importance to understand their role in the development/progression of disease. 8-oxo-7,8-dihydroguanine was incorporated into RNA to understand its structural and functional impact on RNA:RNA and RNA:DNA duplexes, hairpins and pseudoknots. One to three modifications were incorporated into dodecamers of RNA [AAGAGGGAUGAC] resulting in thermal destabilization (ΔTm – 10°C per lesion). Hairpins with tetraloops c-UUCG*-g* (8-10), a-ACCG-g* (11-12), c-UUG*G*-g* (13-16) and c-ACG*G*-g* (17-20) were modified and used to determine thermal stabilities, concluding that: (i) modifying the stem leads to destabilization unless adenosine is the opposing basepair of 8-oxoGua; (ii) modification at the loop is position- and sequence-dependent and varies from slight stabilization to large destabilization, in some cases leading to formation of other secondary structures (hairpin→duplex). Functional effects were established using the aptamer for preQ1 as model. Modification at G5 disrupted the stem P1 and inhibited recognition of the target molecule 7-methylamino-7-deazaguanine (preQ1). Modifying G11 results in increased thermal stability, albeit with a Kd 4-fold larger than its canonical analog. These studies show the capability of 8-oxoG to affect structure and function of RNA, resulting in distinct outcomes as a function of number and position of the lesion.
Collapse
Affiliation(s)
- Yu J Choi
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Tewoderos Ayele
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Katherine V Deventer
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
53
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
54
|
Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochem Soc Trans 2017; 45:1053-1066. [DOI: 10.1042/bst20160433] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Unlike DNA, oxidative damage to RNA has received little attention presumably due to the assumed transient nature of RNA. However, RNAs including mRNA can persist for several hours to days in certain tissues and are demonstrated to sustain greater oxidative damage than DNA. Because neuronal cells in the brain are continuously exposed to reactive oxygen species due to a high oxygen consumption rate, it is not surprising that neuronal RNA oxidation is observed as a common feature at an early stage in a series of neurodegenerative disorders. A recent study on a well-defined bacterial translation system has revealed that mRNA containing 8-oxo-guanosine (8-oxoGuo) has little effect on fidelity despite the anticipated miscoding. Indeed, 8-oxoGuo-containing mRNA leads to ribosomal stalling with a reduced rate of peptide-bond formation by 3–4 orders of magnitude and is subject to no-go decay, a ribosome-based mRNA surveillance mechanism. Another study demonstrates that transfer RNA oxidation catalyzed by cytochrome c (cyt c) leads to its depurination and cross-linking, which may facilitate cyt c release from mitochondria and subsequently induce apoptosis. Even more importantly, a discovery of oxidized microRNA has been recently reported. The oxidized microRNA causes misrecognizing the target mRNAs and subsequent down-regulation in the protein synthesis. It is noteworthy that oxidative modification to RNA not only interferes with the translational machinery but also with regulatory mechanisms of noncoding RNAs that contribute toward the biological complexity of the mammalian brain. Oxidative RNA damage might be a promising therapeutic target potentially useful for an early intervention of diverse neuropsychiatric disorders.
Collapse
|
55
|
Ni C, Li C, Dong Y, Guo X, Zhang Y, Xie Z. Anesthetic Isoflurane Induces DNA Damage Through Oxidative Stress and p53 Pathway. Mol Neurobiol 2017; 54:3591-3605. [PMID: 27194299 PMCID: PMC5736399 DOI: 10.1007/s12035-016-9937-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023]
Abstract
DNA damage is associated with aging and neurological disorders, including Alzheimer's disease. Isoflurane is a commonly used anesthetic. It remains largely unknown whether isoflurane induces DNA damage. Phosphorylation of the histone protein H2A variant X at Ser139 (γH2A.X) is a marker of DNA damage. We therefore set out to assess the effects of isoflurane on γH2A.X level in H4 human neuroglioma cells and in brain tissues of mice. Oxidative stress, caspase-activated DNase (CAD), and the p53 signaling pathway are involved in DNA damage. Thus, we determined the interaction of isoflurane with reactive oxygen species (ROS), CAD, and p53 to illustrate the underlying mechanisms. The cells were treated with 2 % isoflurane for 3 or 6 h. The mice were anesthetized with 1.4 % isoflurane for 2 h. Western blot, immunostaining and live cell fluorescence staining were used in the experiments. We showed that isoflurane increased levels of γH2A.X, cleaved caspase-3, and nucleus translocation of CAD and decreased levels of inhibitor of CAD (ICAD) and p53. Isoflurane enhanced the nucleus level of γH2A.X. Moreover, caspase inhibitor Z-VAD and ROS generation inhibitor N-acetyl-L-cysteine (NAC) attenuated the isoflurane-induced increase in γH2A.X level. However, NAC did not significantly alter the isoflurane-induced reduction in p53 level. Finally, p53 activator (actinomycin D) and inhibitor (pifithrin-α) attenuated and potentiated the isoflurane-induced increase in γH2A.X level, respectively. These findings suggest that isoflurane might induce DNA damage, as represented by increased γH2A.X level, via induction of oxidative stress and inhibition of the repair of DNA damage through the p53 signaling pathway.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Cheng Li
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA.
| |
Collapse
|
56
|
Kanungo J. DNA-PK and P38 MAPK: A Kinase Collusion in Alzheimer's Disease? BRAIN DISORDERS & THERAPY 2017; 6:232. [PMID: 28706768 PMCID: PMC5504707 DOI: 10.4172/2168-975x.1000232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD), characterized by prevalent neuronal death and extracellular deposit of amyloid plaques, is poorly understood. DNA lesions downstream of reduced DNA repair ability have been reported in AD brains. Neurons predominantly use a mechanism to repair double-strand DNA breaks (DSB), which is non-homologous end joining (NHEJ). NHEJ requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kD catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer of p86 and p70 subunits. Ku first binds and then recruits DNA-PKcs to double-stranded DNA ends before NHEJ process begins. Studies have shown reduced NHEJ activity as well as DNA-PKcs and Ku protein levels in AD brains suggesting possible contribution of unrepaired DSB to AD development. However, normal aging brains also show reduced DNA-PKcs and Ku levels thus challenging the notion of any direct link between NHEJ and AD. Another kinase, p38 MAPK is induced by various DNA damaging agents and DSB itself. Increased DNA damage with aging could induce p38 MAPK and its induction may be sustained when DNA repair is compromised in the brain with reduced DNA-PK activity. Combined, these two events may potentially set the stage for an awry nervous system approaching AD.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, USA
| |
Collapse
|
57
|
Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion 2017; 36:66-76. [PMID: 28365408 DOI: 10.1016/j.mito.2017.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/21/2023]
Abstract
Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer retina pathologies, which can be classified as primary and secondary mitochondrial disorders. This review highlights the importance of oxidative stress and mitochondrial DNA damage, underlying outer retinal disorders. Indeed, the metabolically active photoreceptors/RPE are highly prone to these hallmarks of mitochondrial dysfunction, indicating that mitochondria represent a weak link in the antioxidant defenses of outer retinal cells.
Collapse
|
58
|
Choi YJ, Chang SJ, Gibala KS, Resendiz MJE. 8-Oxo-7,8-dihydroadenine and 8-Oxo-7,8-dihydroadenosine-Chemistry, Structure, and Function in RNA and Their Presence in Natural Products and Potential Drug Derivatives. Chemistry 2017; 23:6706-6716. [PMID: 27960050 DOI: 10.1002/chem.201605163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 01/02/2023]
Abstract
A description and history of the role that 8-oxo-7,8-dihydroadenine (8-oxoAde) and 8-oxo-7,8-dihydroadenosine (8-oxoA) have in various fields has been compiled. This Review focusses on 1) the formation of this oxidatively generated modification in RNA, its interactions with other biopolymers, and its potential role in the development/progression of disease; 2) the independent synthesis and incorporation of this modified nucleoside into oligonucleotides of RNA to display the progress that has been made in establishing its behavior in biologically relevant systems; 3) reported synthetic routes, which date back to 1890, along with the progress that has been made in the total synthesis of the nucleobase, nucleoside, and their corresponding derivatives; and 4) the isolation, total synthesis, and biological activity of natural products containing these moieties as the backbone. The current state of research regarding this oxidatively generated lesion as well as its importance in the context of RNA, natural products, and potential as drug derivatives is illustrated using all available examples reported to date.
Collapse
Affiliation(s)
- Yu Jung Choi
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Stephanie J Chang
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| |
Collapse
|
59
|
Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J Neurol Sci 2017; 373:295-302. [DOI: 10.1016/j.jns.2017.01.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 11/23/2022]
|
60
|
Chauderlier A, Delattre L, Buée L, Galas MC. In Vivo Hyperthermic Stress Model: An Easy Tool to Study the Effects of Oxidative Stress on Neuronal Tau Functionality in Mouse Brain. Methods Mol Biol 2017; 1523:369-373. [PMID: 27975265 DOI: 10.1007/978-1-4939-6598-4_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oxidative damage is an early event in neurodegenerative disorders such as Alzheimer disease. To increase oxidative stress in AD-related mouse models is essential to study early mechanisms involved in the physiopathology of these diseases. In this chapter, we describe an experimental mouse model of transient and acute hyperthermic stress to induce in vivo an increase of oxidative stress in the brain of any kind of wild-type or transgenic mouse.
Collapse
Affiliation(s)
- Alban Chauderlier
- Inserm, UMRS1172, JPARC, Alzheimer & Tauopathies, 1 rue Polonovski, 59045, Lille, France
| | - Lucie Delattre
- Inserm, UMRS1172, JPARC, Alzheimer & Tauopathies, 1 rue Polonovski, 59045, Lille, France
| | - Luc Buée
- Inserm, UMRS1172, JPARC, Alzheimer & Tauopathies, 1 rue Polonovski, 59045, Lille, France
| | - Marie-Christine Galas
- Inserm, UMRS1172, JPARC, Alzheimer & Tauopathies, 1 rue Polonovski, 59045, Lille, France.
| |
Collapse
|
61
|
Foyet HS, Asongalem AE, Oben EK, Cioanca O, Hancianu M, Hritcu L. Effects of the Methanolic Extract of Vitellaria paradoxa Stem Bark Against Scopolamine-Induced Cognitive Dysfunction and Oxidative Stress in the Rat Hippocampus. Cell Mol Neurobiol 2016; 36:1139-49. [PMID: 26620052 PMCID: PMC11482451 DOI: 10.1007/s10571-015-0310-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Vitellaria paradoxa C.F. Gaertn (Sapotaceae) is a perennial three which naturally grows in the northern part of Cameroon. It has been traditionally used in the Cameroonian folk medicine for treating inflammation and pain. In the present study, we evaluate the possible anti-amnesic and antioxidative effects of the methanolic extract of V. paradoxa stem bark in an Alzheimer's disease (AD) rat model of scopolamine. Rats received a single injection of scopolamine (1.5 mg/kg) before behavioral testing and were treated with the methanolic extract (25 and 50 mg/kg), daily, for eight continuous days. Also, the antioxidant activity in the hippocampus was assessed using the total content of reduced glutathione and malondialdehyde levels. The scopolamine-treated rats exhibited the following: decrease of exploratory time and discrimination index within the novel object recognition test, decrease of spontaneous alternations percentage within Y-maze task, and increase of working memory errors, reference memory errors, and time taken to consume all five baits within radial arm-maze task. Administration of the methanolic extract significantly improved these parameters, suggesting positive effects on memory formation processes and antioxidant potential. Our results suggest that the methanolic extract ameliorates scopolamine-induced memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Collapse
Affiliation(s)
- Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon.
| | - Acha Emmanuel Asongalem
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Eyong Kenneth Oben
- Department of Organic Chemistry, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Oana Cioanca
- Faculty of Pharmacy, University of Medicine and Pharmacy "Gr. T. Popa", 16 University Str., 700117, Iasi, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, University of Medicine and Pharmacy "Gr. T. Popa", 16 University Str., 700117, Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506, Iasi, Romania.
| |
Collapse
|
62
|
Adlimoghaddam A, Sabbir MG, Albensi BC. Ammonia as a Potential Neurotoxic Factor in Alzheimer's Disease. Front Mol Neurosci 2016; 9:57. [PMID: 27551259 PMCID: PMC4976099 DOI: 10.3389/fnmol.2016.00057] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Ammonia is known to be a potent neurotoxin that causes severe negative effects on the central nervous system. Excessive ammonia levels have been detected in the brain of patients with neurological disorders such as Alzheimer disease (AD). Therefore, ammonia could be a factor contributing to the progression of AD. In this review, we provide an introduction to the toxicity of ammonia and putative ammonia transport proteins. We also hypothesize how ammonia may be linked to AD. Additionally, we discuss the evidence that support the hypothesis that ammonia is a key factor contributing to AD progression. Lastly, we summarize the old and new experimental evidence that focuses on energy metabolism, mitochondrial function, inflammatory responses, excitatory glutamatergic, and GABAergic neurotransmission, and memory in support of our ammonia-related hypotheses of AD.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Mohammad G Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
63
|
Lillenes MS, Rabano A, Støen M, Riaz T, Misaghian D, Møllersen L, Esbensen Y, Günther CC, Selnes P, Stenset VTV, Fladby T, Tønjum T. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer's disease. Mol Brain 2016; 9:61. [PMID: 27234294 PMCID: PMC4884418 DOI: 10.1186/s13041-016-0237-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a progressive, multifactorial neurodegenerative disorder that is the main cause of dementia globally. AD is associated with increased oxidative stress, resulting from imbalance in production and clearance of reactive oxygen species (ROS). ROS can damage DNA and other macromolecules, leading to genome instability and disrupted cellular functions. Base excision repair (BER) plays a major role in repairing oxidative DNA lesions. Here, we compared the expression of BER components APE1, OGG1, PARP1 and Polβ in blood and postmortem brain tissue from patients with AD, mild cognitive impairment (MCI) and healthy controls (HC). Results BER mRNA levels were correlated to clinical signs and cerebrospinal fluid biomarkers for AD. Notably, the expression of BER genes was higher in brain tissue than in blood samples. Polβ mRNA and protein levels were significantly higher in the cerebellum than in the other brain regions, more so in AD patients than in HC. Blood mRNA levels of OGG1 was low and PARP1 high in MCI and AD. Conclusions These findings reflect the oxidative stress-generating energy-consumption in the brain and the importance of BER in repairing these damage events. The data suggest that alteration in BER gene expression is an event preceding AD. The results link DNA repair in brain and blood to the etiology of AD at the molecular level and can potentially serve in establishing novel biomarkers, particularly in the AD prodromal phase. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0237-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meryl S Lillenes
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Alberto Rabano
- Fundación Centro Investigación Enfermedades Neurológicas (CIEN), Madrid, Spain
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Dorna Misaghian
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Linda Møllersen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ying Esbensen
- Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | | | - Per Selnes
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Vidar T V Stenset
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Tormod Fladby
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway. .,Department of Microbiology, University of Oslo, Oslo, Norway. .,Department of Microbiology, University of Oslo, Oslo University Hospital, Postbox 4950 Nydalen, Oslo, NO-0424, Norway.
| |
Collapse
|
64
|
Lai L, Zhao C, Su M, Li X, Liu X, Jiang H, Amatore C, Wang X. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters. Biomater Sci 2016; 4:1085-91. [PMID: 27229662 DOI: 10.1039/c6bm00233a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Lanmei Lai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MBH, Tipton KF, Marco-Contelles J. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Front Neurosci 2016; 10:205. [PMID: 27252617 PMCID: PMC4879129 DOI: 10.3389/fnins.2016.00205] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the "one molecule, multiple targets" paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Gerard Esteban
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Rona R. Ramsay
- Biomolecular Sciences, Biomedical Sciences Research Complex, University of St AndrewsSt. Andrews, UK
| | - Moussa B. H. Youdim
- Department of Pharmacology, Ruth and Bruce Rappaport Faculty of Medicine, Eve Topf and National Parkinson Foundation Center for Neurodegenerative Diseases ResearchHaifa, Israel
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Spanish National Research CouncilMadrid, Spain
| |
Collapse
|
66
|
Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons. Sci Rep 2016; 6:25705. [PMID: 27168474 PMCID: PMC4863375 DOI: 10.1038/srep25705] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors.
Collapse
|
67
|
Vohhodina J, Harkin DP, Savage KI. Dual roles of DNA repair enzymes in RNA biology/post-transcriptional control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:604-19. [PMID: 27126972 DOI: 10.1002/wrna.1353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
Abstract
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs. WIREs RNA 2016, 7:604-619. doi: 10.1002/wrna.1353 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jekaterina Vohhodina
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - D Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
68
|
Chen HF, Chen YH, Liu CH, Wang L, Chen X, Yu BY, Qi J. Integrated chemometric fingerprints of antioxidant activities and HPLC-DAD-CL for assessing the quality of the processed roots of Polygonum multiflorum Thunb. (Heshouwu). Chin Med 2016; 11:18. [PMID: 27076840 PMCID: PMC4830048 DOI: 10.1186/s13020-016-0087-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/23/2016] [Indexed: 01/23/2023] Open
Abstract
Background The processed roots of Polygonum multiflorum Thunb. (Heshouwu; processed HSW) are commonly used in anti-aging medicine. Few reports have combined chemical profiles with bioactivity to evaluate the quality of the processed HSW. This study aims to integrate chemometric fingerprints of antioxidant activities and high-performance liquid chromatography–diode array detection–chemiluminescence (HPLC–DAD–CL) to assess the quality of processed HSW. Methods An online HPLC–DAD–CL based on the three reactive oxygen species (ROS), superoxide anion, hydrogen peroxide, and peroxynitriteanion, was developed to screen the potential anti-aging constituents for a comprehensive quality evaluation of processed HSW. Additionally, antioxidant-activity-integrated fingerprints were constructed and hierarchical cluster analysis and principal component analysis were used to evaluate the variations among 14 batches of processed HSW samples purchased from drug stores in different habitats. Results Fourteen batches of processed HSW samples were highly similar and classified into two clusters using hierarchical cluster analysis. Twelve active compounds exhibited antioxidant activity on the ROS with different degrees of sensitivity that constituted specific fingerprints. Among them, protocatechuic acid, catechin, trans-2,3,5,4′-tetrahydroxy-stilbene-2-O-β-d-glucoside, 2,3,5, 4′-tetrahydroxy-stilbene-2-O-β-d-(2′′-galloyl)-glucoside, torachrysone-8-O-glucoside, and emodin-8-O-β-d-glucoside exerted relatively large influences on the differences between processed HSW samples. Conclusion Our study established the antioxidative activity-integrated fingerprint for processed HSW and achieved a screening of the potential anti-aging constituents using the online HPLC–DAD–CL method with H2O2, O2•−, and ONOO−scavenging experiments. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0087-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Fang Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China ; Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - You Hua Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Chun Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Lu Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Xi Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Bo Yang Yu
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198 China
| | - Jin Qi
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198 China
| |
Collapse
|
69
|
Guest J, Grant R. Carotenoids and Neurobiological Health. ADVANCES IN NEUROBIOLOGY 2016; 12:199-228. [DOI: 10.1007/978-3-319-28383-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
70
|
Violet M, Chauderlier A, Delattre L, Tardivel M, Chouala MS, Sultan A, Marciniak E, Humez S, Binder L, Kayed R, Lefebvre B, Bonnefoy E, Buée L, Galas MC. Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. Neurobiol Dis 2015; 82:540-551. [PMID: 26385829 DOI: 10.1016/j.nbd.2015.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/09/2015] [Accepted: 09/13/2015] [Indexed: 01/05/2023] Open
Abstract
The accumulation of DNA and RNA oxidative damage is observed in cortical and hippocampal neurons from Alzheimer's disease (AD) brains at early stages of pathology. We recently reported that Tau is a key nuclear player in the protection of neuronal nucleic acid integrity in vivo under physiological conditions and hyperthermia, a strong inducer of oxidative stress. In a mouse model of tauopathy (THY-Tau22), we demonstrate that hyperthermia selectively induces nucleic acid oxidative damage and nucleic acid strand breaks in the nucleus and cytoplasm of hippocampal neurons that display early Tau phosphorylation but no Tau fibrils. Nucleic acid-damaged neurons were exclusively immunoreactive for prefibrillar Tau oligomers. A similar association between prefibrillar Tau oligomers and nucleic acid oxidative damage was observed in AD brains. Pretreatment with Methylene Blue (MB), a Tau aggregation inhibitor and a redox cycler, reduced hyperthermia-induced Tau oligomerization as well as nucleic acid damage. This study clearly highlights the existence of an early and critical time frame for hyperthermia-induced Tau oligomerization, which most likely occurs through increased oxidative stress, and nucleic acid vulnerability during the progression of Tau pathology. These results suggest that at early stages of AD, Tau oligomerization triggers the loss of the nucleic acid protective function of monomeric Tau. This study highlights the existence of a short therapeutic window in which to prevent the formation of pathological forms of Tau and their harmful consequences on nucleic acid integrity during the progression of Tau pathology.
Collapse
Affiliation(s)
- Marie Violet
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Alban Chauderlier
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Lucie Delattre
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Meryem Tardivel
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Meliza Sendid Chouala
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Audrey Sultan
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Elodie Marciniak
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Sandrine Humez
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Lester Binder
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Ave. NE, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rakez Kayed
- Department of Neurology, George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045, USA; Department of Neuroscience & Cell Biology, George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045, USA
| | - Bruno Lefebvre
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Eliette Bonnefoy
- Inserm UMRS 1007, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris Cedex 06, France
| | - Luc Buée
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Marie-Christine Galas
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France.
| |
Collapse
|
71
|
Forestier A, Douki T, De Rosa V, Béal D, Rachidi W. Combination of Aβ Secretion and Oxidative Stress in an Alzheimer-Like Cell Line Leads to the Over-Expression of the Nucleotide Excision Repair Proteins DDB2 and XPC. Int J Mol Sci 2015; 16:17422-44. [PMID: 26263968 PMCID: PMC4581200 DOI: 10.3390/ijms160817422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
Repair of oxidative DNA damage, particularly Base Excision Repair (BER), impairment is often associated with Alzheimer’s disease pathology. Here, we aimed at investigating the complete Nucleotide Excision Repair (NER), a DNA repair pathway involved in the removal of bulky DNA adducts, status in an Alzheimer-like cell line. The level of DNA damage was quantified using mass spectrometry, NER gene expression was assessed by qPCR, and the NER protein activity was analysed through a modified version of the COMET assay. Interestingly, we found that in the presence of the Amyloid β peptide (Aβ), NER factors were upregulated at the mRNA level and that NER capacities were also specifically increased following oxidative stress. Surprisingly, NER capacities were not differentially improved following a typical NER-triggering of ultraviolet C (UVC) stress. Oxidative stress generates a differential and specific DNA damage response in the presence of Aβ. We hypothesized that the release of NER components such as DNA damage binding protein 2 (DDB2) and Xeroderma Pigmentosum complementation group C protein (XPC) following oxidative stress might putatively involve their apoptotic role rather than DNA repair function.
Collapse
Affiliation(s)
- Anne Forestier
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Thierry Douki
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Viviana De Rosa
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - David Béal
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Walid Rachidi
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| |
Collapse
|
72
|
Antiamnesic and Antioxidants Effects of Ferulago angulata Essential Oil Against Scopolamine-Induced Memory Impairment in Laboratory Rats. Neurochem Res 2015; 40:1799-809. [PMID: 26168780 DOI: 10.1007/s11064-015-1662-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/25/2022]
Abstract
Ferulago angulata (Apiaceae) is a shrub indigenous to western Iran, Turkey and Iraq. In traditional medicine, F. angulata is recommended for treating digestive pains, hemorrhoids, snake bite, ulcers and as sedative. In the present study, the effects of inhaled F. angulata essential oil (1 and 3%, daily, for 21 days) on spatial memory performance were assessed in scopolamine-treated rats. Scopolamine-induced memory impairments were observed, as measured by the Y-maze and radial arm-maze tasks. Decreased activities of superoxide dismutase, glutathione peroxidase and catalase along with increase of acetylcholinesterase activity and decrease of total content of reduced glutathione were observed in the rat hippocampal homogenates of scopolamine-treated animals as compared with control. Production of protein carbonyl and malondialdehyde significantly increased in the rat hippocampal homogenates of scopolamine-treated animals as compared with control, as a consequence of impaired antioxidant enzymes activities. Additionally, in scopolamine-treated rats exposure to F. angulata essential oil significantly improved memory formation and decreased oxidative stress, suggesting memory-enhancing and antioxidant effects. Therefore, our results suggest that multiple exposures to F. angulata essential oil ameliorate scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Collapse
|
73
|
Hong IS, Greenberg MM. Sequence selective tagging of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) using PNAs. Bioorg Med Chem Lett 2015; 25:4918-4921. [PMID: 26051648 DOI: 10.1016/j.bmcl.2015.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a commonly formed DNA lesion that is useful as a biomarker for oxidative stress. Methods for detecting 8-oxodGuo at specific positions within DNA could be useful for correlating DNA damage with mutational hotspots and repair enzyme accessibility. We describe a method for covalently linking ('tagging') peptide nucleic acids (PNAs) containing terminal nucleophiles under oxidative conditions to 8-oxodGuo at specific sites within DNA. Several nucleophiles were examined and the ε-amine of lysine was selected for further studies. As little as 10 fmol of 8-oxodGuo were detected by gel shift using (32)P-labeled target DNA and no tagging of dG at the same site or 8-oxodGuo at a distal site was detected when potassium ferricyanide was used as oxidant in substrates as long as 221 bp.
Collapse
Affiliation(s)
- In Seok Hong
- Johns Hopkins University, Department of Chemistry, Baltimore, CA 21218, United States; Kongju National University, Department of Chemistry, 182, Shinkwan-dong, Kongju, Chungnam 314-701, Republic of Korea
| | - Marc M Greenberg
- Johns Hopkins University, Department of Chemistry, Baltimore, CA 21218, United States.
| |
Collapse
|
74
|
Dubinina EE, Schedrina LV, Neznanov NG, Zalutskaya NM, Zakharchenko DV. [Oxidative stress and its effect on cells functional activity of alzheimer's disease]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:57-69. [PMID: 25762599 DOI: 10.18097/pbmc20156101057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The paper summarizes literature data on the importance of oxidative stress as one of the pathogenetic mechanisms in Alzheimer's disease. The paper describes the main specific and nonspecific ways of reactive oxygen species generation in the course of the disease development. The effect of reactive oxygen species generated by the functional activity of cells, i.e. apoptosis and mitotic cycle, is shown. The role of the regulatory system of nodal cells is performed by phosphorylation/dephosphorylation process which is associated with intense phosphorylation of tau protein and mitosis-specific proteins. In Alzheimer's disease, the regulating function of peptidyl-prolyl isomerases in particular of Pin1 associated with maintaining a balanced state of phosphorylation/dephosphorylation processes is disturbed. Taking into consideration the multifactorial impairment of the cell cycle control, this process should be considered from the standpoint of the general state of metabolic processes, and oxidative stress has one of the key positions in aging.
Collapse
|
75
|
A Potent Multi-functional Neuroprotective Derivative of Tetramethylpyrazine. J Mol Neurosci 2015; 56:977-987. [DOI: 10.1007/s12031-015-0566-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/14/2015] [Indexed: 11/26/2022]
|
76
|
Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol 2015; 89:1035-44. [PMID: 25895140 DOI: 10.1007/s00204-015-1517-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Increasing evidence suggests that free radical-mediated oxidation of biological substrates is a key feature of Alzheimer's disease (AD) pathogenesis. While it has long been established that biomarkers of lipid peroxidation (LPO) are elevated in AD brain as well as ventricular CSF postmortem, more recent studies have demonstrated increased LPO biomarkers in postmortem brain from subjects with mild cognitive impairment, the earliest clinically detectable phase of dementia and preclinical AD, the earliest detectable pathological phase. Furthermore, multiple LPO biomarkers are elevated in readily accessible biological fluids throughout disease progression. Collectively, these studies demonstrate that LPO is an early feature during disease progression and may be considered a key pathway for targeted therapeutics as well as an enhancer of diagnostic accuracy for early detection of subjects during the prodromal phase.
Collapse
|
77
|
Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1–42)-Induced Oxidative Stress in the Rat Hippocampus. Neurochem Res 2015; 40:952-60. [DOI: 10.1007/s11064-015-1550-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/15/2022]
|
78
|
Enhanced behavioral response by decreasing brain oxidative stress to 6-hydroxy-l-nicotine in Alzheimer’s disease rat model. Neurosci Lett 2015; 591:41-47. [DOI: 10.1016/j.neulet.2015.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/27/2014] [Accepted: 02/06/2015] [Indexed: 12/17/2022]
|
79
|
Inadequate supply of vitamins and DHA in the elderly: Implications for brain aging and Alzheimer-type dementia. Nutrition 2015; 31:261-75. [DOI: 10.1016/j.nut.2014.06.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/28/2022]
|
80
|
Paul R, Greenberg MM. Rapid RNA strand scission following C2'-hydrogen atom abstraction. J Am Chem Soc 2015; 137:596-9. [PMID: 25580810 DOI: 10.1021/ja511401g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
C2'-Nucleotide radicals have been proposed as key intermediates in direct strand break formation in RNA exposed to ionizing radiation. Uridin-2'-yl radical (1) was independently generated in single- and double-stranded RNA via photolysis of a ketone precursor. Direct stand breaks result from heterolytic cleavage of the adjacent C3'-carbon-oxygen bond. Trapping of 1 by O2 or β-mercaptoethanol (1 M) does not compete with strand scission, indicating that phosphate elimination is >10(6) s(-1). Uracil loss also does not compete with strand scission. When considered in conjunction with reports that nucleobase radicals produce 1, this chemistry explains why RNA is significantly more susceptible to strand scission by ionizing radiation (hydroxyl radical) than is DNA.
Collapse
Affiliation(s)
- Rakesh Paul
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
81
|
Moneim AEA. Oxidant/Antioxidant imbalance and the risk of Alzheimer's disease. Curr Alzheimer Res 2015; 12:335-349. [PMID: 25817254 PMCID: PMC5384363 DOI: 10.2174/1567205012666150325182702] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress-induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize.
Collapse
Affiliation(s)
- Ahmed E Abdel Moneim
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| |
Collapse
|
82
|
Kamal MA, Mushtaq G, Greig NH. Current Update on Synopsis of miRNA Dysregulation in Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2015; 14:492-501. [PMID: 25714967 PMCID: PMC5878050 DOI: 10.2174/1871527314666150225143637] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) has been implicated in various neurological disorders (NDs) of the central nervous system such as Alzheimer disease, Parkinson's disease, Huntington disease, amyotrophic lateral sclerosis, schizophrenia and autism. If dysregulated miRNAs are identified in patients suffering from NDs, this may serve as a biomarker for the earlier diagnosis and monitoring of disease progression. Identifying the role of miRNAs in normal cellular processes and understanding how dysregulated miRNA expression is responsible for their neurological effects is also critical in the development of new therapeutic strategies for NDs. miRNAs hold great promise from a therapeutic point of view especially if it can be proved that a single miRNA has the ability to influence several target genes, making it possible for the researchers to potentially modify a whole disease phenotype by modulating a single miRNA molecule. Hence, better understanding of the mechanisms by which miRNA play a role in the pathogenesis of NDs may provide novel targets to scientists and researchers for innovative therapies.
Collapse
Affiliation(s)
- Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Gohar Mushtaq
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
83
|
Fu XY, Yang MF, Cao MZ, Li DW, Yang XY, Sun JY, Zhang ZY, Mao LL, Zhang S, Wang FZ, Zhang F, Fan CD, Sun BL. Strategy to Suppress Oxidative Damage-Induced Neurotoxicity in PC12 Cells by Curcumin: the Role of ROS-Mediated DNA Damage and the MAPK and AKT Pathways. Mol Neurobiol 2014; 53:369-378. [PMID: 25432891 DOI: 10.1007/s12035-014-9021-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022]
Abstract
Oxidative damage plays a key role in causation and progression of neurodegenerative diseases. Inhibition of oxidative stress represents one of the most effective ways in treating human neurologic diseases. Herein, we evaluated the protective effect of curcumin on PC12 cells against H2O2-induced neurotoxicity and investigated its underlying mechanism. The results indicated that curcumin pre-treatment significantly suppressed H2O2-induced cytotoxicity, inhibited the loss of mitochondrial membrane potential (Δψm) through regulation of Bcl-2 family expression, and ultimately reversed H2O2-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage, DNA damage, and accumulation of reactive oxygen species (ROS) all confirmed its protective effects. Moreover, curcumin markedly alleviated the dysregulation of the MAPK and AKT pathways induced by H2O2. Taken together, our findings suggest that the strategy of using curcumin could be a highly effective way in combating oxidative damage-mediated human neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China.,Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ming-Zhi Cao
- Department of Neurosurgery, Huxi Hospital, Jining Medical University, Shanxian, 274300, Shandong, China
| | - Da-Wei Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Xiao-Yi Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Jing-Yi Sun
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Zong-Yong Zhang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Lei-Lei Mao
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Shuai Zhang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Feng-Ze Wang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Feng Zhang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.,Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China. .,Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
84
|
Shokolenko IN, Wilson GL, Alexeyev MF. Aging: A mitochondrial DNA perspective, critical analysis and an update. World J Exp Med 2014; 4:46-57. [PMID: 25414817 PMCID: PMC4237642 DOI: 10.5493/wjem.v4.i4.46] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/15/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial theory of aging, a mainstream theory of aging which once included accumulation of mitochondrial DNA (mtDNA) damage by reactive oxygen species (ROS) as its cornerstone, has been increasingly losing ground and is undergoing extensive revision due to its inability to explain a growing body of emerging data. Concurrently, the notion of the central role for mtDNA in the aging process is being met with increased skepticism. Our progress in understanding the processes of mtDNA maintenance, repair, damage, and degradation in response to damage has largely refuted the view of mtDNA as being particularly susceptible to ROS-mediated mutagenesis due to its lack of “protective” histones and reduced complement of available DNA repair pathways. Recent research on mitochondrial ROS production has led to the appreciation that mitochondria, even in vitro, produce much less ROS than previously thought, automatically leading to a decreased expectation of physiologically achievable levels of mtDNA damage. New evidence suggests that both experimentally induced oxidative stress and radiation therapy result in very low levels of mtDNA mutagenesis. Recent advances provide evidence against the existence of the “vicious” cycle of mtDNA damage and ROS production. Meta-studies reveal no longevity benefit of increased antioxidant defenses. Simultaneously, exciting new observations from both comparative biology and experimental systems indicate that increased ROS production and oxidative damage to cellular macromolecules, including mtDNA, can be associated with extended longevity. A novel paradigm suggests that increased ROS production in aging may be the result of adaptive signaling rather than a detrimental byproduct of normal respiration that drives aging. Here, we review issues pertaining to the role of mtDNA in aging.
Collapse
|
85
|
Abstract
The uridin-2'-yl radical (1) has been proposed as an intermediate during RNA oxidation. However, its reactivity has not been thoroughly studied due to the complex conditions under which it is typically generated. The uridin-2'-yl radical was independently generated from a benzyl ketone (2a) via Norrish type I photocleavage upon irradiation at λmax = 350 nm. Dioxygen and β-mercaptoethanol are unable to compete with loss of uracil from 1 in phosphate buffer. Thiol trapping competes with uracil fragmentation in less polar solvent conditions. This is ascribed mostly to a reduction in the rate constant for uracil elimination in the less polar solvent. Hydrogen atom transfer to 1 from β-mercaptoethanol occurs exclusively from the α-face to produce arabinouridine. Mass balances range from 72 to 95%. Furthermore, the synthesis of 2a is amenable to formation of the requisite phosphoramidite for solid-phase oligonucleotide synthesis. This and the fidelity with which the urdin-2'-yl radical is generated from 2a suggest that this precursor should be useful for studying the radical's reactivity in synthetic oligonucleotides.
Collapse
Affiliation(s)
- Rakesh Paul
- Department of Chemistry, Johns
Hopkins University 3400
North Charles Street, Baltimore, Maryland 21218, United
States
| | - Marc M. Greenberg
- Department of Chemistry, Johns
Hopkins University 3400
North Charles Street, Baltimore, Maryland 21218, United
States
| |
Collapse
|
86
|
Darras FH, Kling B, Sawatzky E, Heilmann J, Decker M. Cyclic acyl guanidines bearing carbamate moieties allow potent and dirigible cholinesterase inhibition of either acetyl- or butyrylcholinesterase. Bioorg Med Chem 2014; 22:5020-34. [DOI: 10.1016/j.bmc.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/17/2014] [Accepted: 06/04/2014] [Indexed: 01/13/2023]
|
87
|
Bajacan JEV, Hong IS, Penning TM, Penning TW, Greenberg MM. Quantitative detection of 8-Oxo-7,8-dihydro-2'-deoxyguanosine using chemical tagging and qPCR. Chem Res Toxicol 2014; 27:1227-35. [PMID: 24932862 PMCID: PMC4106692 DOI: 10.1021/tx500120p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
8-Oxo-7,8-dihydro-2′-deoxyguanosine
(8-oxodGuo) is a commonly
formed DNA lesion that is useful as a biomarker for oxidative stress.
Although methods for selective quantification of 8-oxodGuo exist,
there is room for additional methods that are sensitive and utilize
instrumentation that is widely available. We previously took advantage
of the reported reactivity of 8-oxodGuo to develop a method for detecting
the lesion by selectively covalently tagging it with a molecule equipped
with a biotin label that can be used subsequently with a reporting
method (XueL., and GreenbergM. M. (2007) J. Am. Chem. Soc.129, 701017497789). We now report a method that can
detect as little as 14 amol of 8-oxodGuo by tagging DNA with a reagent
containing a disulfide that reduces background due to nonspecific
binding. The reagent also contains biotin that enables capturing target
DNA on streptavidin-coated magnetic beads. The captured DNA is quantified
using quantitative PCR. The method is validated by comparing the amount
of 8-oxodGuo detected as a function of Fe2+/H2O2/ascorbate-dose to that reported previously using mass
spectrometry.
Collapse
Affiliation(s)
- John Ernest Vallarta Bajacan
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | | | |
Collapse
|
88
|
Jhang KA, Lee EO, Kim HS, Chong YH. Norepinephrine provides short-term neuroprotection against Aβ1-42 by reducing oxidative stress independent of Nrf2 activation. Neurobiol Aging 2014; 35:2465-2473. [PMID: 24954831 DOI: 10.1016/j.neurobiolaging.2014.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/16/2014] [Accepted: 05/21/2014] [Indexed: 11/16/2022]
Abstract
Pathophysiological evidence correlating locus ceruleus neuron loss with increased Alzheimer's disease pathology suggests that norepinephrine (NE) is neuroprotective. Here, we evaluated the effects of NE on amyloid-β (Aβ)1-42-induced neurotoxicity and determined how NE exerts its actions in human SK-N-SH neurons. NE protected SK-N-SH cells against Aβ1-42-induced neurotoxicity only after a 4-hour treatment. The ability of NE to reduce Aβ1-42-induced neurotoxicity was independent of the adrenoceptor signaling pathway. Notably, NE downregulated Aβ1-42-mediated increases in intracellular reactive oxygen species (ROS) production. However, NE did not affect Aβ1-42-induced activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) redox signaling pathway, known to be involved in oxidative stress. Among the antioxidants tested, N-acetyl cysteine and glutathione, which are not only ROS scavengers but also thiol-reducing agents, mimicked the protective effects of NE. Consistently, Kelch-like ECH-associating protein 1 inhibitors, which activated the Nrf2 pathway, failed to decrease Aβ1-42-induced ROS generation and elicited no protection against Aβ1-42. Taken together, these findings suggest that NE could exert neuroprotective function against Aβ1-42 via redox cycling and reduction of intracellular oxidative stress regardless of downstream activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Kyoung A Jhang
- Department of Microbiology, Ewha Medical Research Institute, School of Medicine, Division of Molecular Biology and Neuroscience, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Ok Lee
- Department of Microbiology, Ewha Medical Research Institute, School of Medicine, Division of Molecular Biology and Neuroscience, Ewha Womans University, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hae Chong
- Department of Microbiology, Ewha Medical Research Institute, School of Medicine, Division of Molecular Biology and Neuroscience, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
89
|
Wu MF, Yin JH, Hwang CS, Tang CM, Yang DI. NAD attenuates oxidative DNA damages induced by amyloid beta-peptide in primary rat cortical neurons. Free Radic Res 2014; 48:794-805. [PMID: 24678962 DOI: 10.3109/10715762.2014.907889] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One major pathological hallmark of Alzheimer's disease (AD) is accumulation of senile plaques in patients' brains, mainly composed of amyloid beta-peptide (Aβ). Nicotinamide adenine dinucleotide (NAD) has emerged as a common mediator regulating energy metabolism, mitochondrial function, aging, and cell death, all of which are critically involved in neuronal demise observed in AD. In this work, we tested the hypothesis that NAD may attenuate Aβ-induced DNA damages, thereby conferring neuronal resistance to primary rat cortical cultures. We found that co-incubation of NAD dose-dependently attenuated neurotoxicity mediated by Aβ25-35 and Aβ1-42 in cultured rat cortical neurons, with the optimal protective dosage at 50 mM. NAD also abolished the formation of reactive oxygen species (ROS) induced by Aβ25-35. Furthermore, Aβs were capable of inducing oxidative DNA damages by increasing the extents of 8-hydroxy-2´-deoxyguanosine (8-OH-dG), numbers of apurinic/apyrimidinic (AP) sites, genomic DNA single-stranded breaks (SSBs), as well as DNA double-stranded breaks (DSBs)/fragmentation, which can all be attenuated upon co-incubation with NAD. Our results thus reveal a novel finding that NAD is protective against DNA damage induced by existing Aβ, leading ultimately to neuroprotection in primary cortical culture.
Collapse
Affiliation(s)
- M-F Wu
- Institute of Brain Science and Brain Research Center, National Yang-Ming University , Taipei City , Taiwan
| | | | | | | | | |
Collapse
|
90
|
MicroRNAs and reactive oxygen species: Are they in the same regulatory circuit? MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:64-71. [DOI: 10.1016/j.mrgentox.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
|
91
|
Antoniali G, Lirussi L, Poletto M, Tell G. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid Redox Signal 2014; 20:621-39. [PMID: 23879289 PMCID: PMC3901381 DOI: 10.1089/ars.2013.5491] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. RECENT ADVANCES After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. CRITICAL ISSUES A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. FUTURE DIRECTIONS A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Medical and Biological Sciences, University of Udine , Udine, Italy
| | | | | | | |
Collapse
|
92
|
Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer's disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:497802. [PMID: 24683436 PMCID: PMC3941786 DOI: 10.1155/2014/497802] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/02/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease affecting the elderly. Clinically, it is characterized by a progressive loss of memory and cognitive function. Neuropathologically, it is characterized by the presence of extracellular β-amyloid (Aβ) deposited as neuritic plaques (NP) and neurofibrillary tangles (NFT) made of abnormal and hyperphosphorylated tau protein. These lesions are capable of generating the neuronal damage that leads to cell death and cognitive failure through the generation of reactive oxygen species (ROS). Evidence indicates the critical role of Aβ metabolism in prompting the oxidative stress observed in AD patients. However, it has also been proposed that oxidative damage precedes the onset of clinical and pathological AD symptoms, including amyloid-β deposition, neurofibrillary tangle formation, vascular malfunction, metabolic syndrome, and cognitive decline. This paper provides a brief description of the three main proteins associated with the development of the disease (Aβ, tau, and ApoE) and describes their role in the generation of oxidative stress. Finally, we describe the mitochondrial alterations that are generated by Aβ and examine the relationship of vascular damage which is a potential prognostic tool of metabolic syndrome. In addition, new therapeutic approaches targeting ROS sources and metabolic support were reported.
Collapse
|
93
|
Avila J, Gómez-Ramos A, Soriano E. Variations in brain DNA. Front Aging Neurosci 2014; 6:323. [PMID: 25505410 PMCID: PMC4243573 DOI: 10.3389/fnagi.2014.00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022] Open
Abstract
It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain) of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| | - Alberto Gómez-Ramos
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de BarcelonaBarcelona, Spain
- Vall d’Hebrón Institut de Recerca (VHIR)Barcelona, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| |
Collapse
|
94
|
Sultana R, Baglioni M, Cecchetti R, Cai J, Klein JB, Bastiani P, Ruggiero C, Mecocci P, Butterfield DA. Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 2013; 65:595-606. [PMID: 23933528 PMCID: PMC3849349 DOI: 10.1016/j.freeradbiomed.2013.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/23/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022]
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative condition. AD is histopathologically characterized by the presence of three main hallmarks: senile plaques (rich in amyloid-β peptide), neuronal fibrillary tangles (rich in phosphorylated tau protein), and synapse loss. However, definitive biomarkers for this devastating disease in living people are still lacking. In this study, we show that levels of oxidative stress markers are significantly increased in the mitochondria isolated from lymphocytes of subjects with mild cognitive impairment (MCI) compared to cognitively normal individuals. Further, an increase in mitochondrial oxidative stress in MCI is associated with MMSE score, vitamin E components, and β-carotene. Further, a proteomics approach showed that alterations in the levels of thioredoxin-dependent peroxide reductase, myosin light polypeptide 6, and ATP synthase subunit β might be important in the progression and pathogenesis of AD. Increased understanding of oxidative stress and protein alterations in easily obtainable peripheral tissues will be helpful in developing biomarkers to combat this devastating disorder.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Mauro Baglioni
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Patrizia Bastiani
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy.
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
95
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
96
|
Rosini M, Simoni E, Milelli A, Minarini A, Melchiorre C. Oxidative Stress in Alzheimer’s Disease: Are We Connecting the Dots? J Med Chem 2013; 57:2821-31. [DOI: 10.1021/jm400970m] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michela Rosini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elena Simoni
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto
237, 47921 Rimini, Italy
| | - Anna Minarini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Carlo Melchiorre
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
97
|
Choi SJ, Kim JK, Kim HK, Harris K, Kim CJ, Park GG, Park CS, Shin DH. 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. J Med Food 2013; 16:977-83. [PMID: 24074359 DOI: 10.1089/jmf.2012.2739] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, the protective effect of sweet potato extract against hydrogen peroxide-induced oxidative stress and cytotoxicity on the pheochromocytoma cell line (PC12) was investigated. The active component of the sweet potato extract was purified and determined to be 2,4-di-tert-butylphenol. The antioxidant capacity of 2,4-di-tert-butylphenol was measured by using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical. To examine the effects of 2,4-di-tert-butylphenol on amyloid-beta peptide (Aβ1₁₋₄₂)-induced learning and memory impairment in mice, in vivo behavioral tests were performed. Administration of 2,4-di-tert-butylphenol increased alternation behavior in mice injected with Aβ₁₋₄₂. These results suggest that sweet potato extract could be protective against Aβ-induced neurotoxicity, possibly due to the antioxidative capacity of its constituent, 2,4-di-tert-butylphenol.
Collapse
Affiliation(s)
- Soo Jung Choi
- 1 Department of Food Technology, Korea University , Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Gupta K, Chandran S, Hardingham GE. Human stem cell-derived astrocytes and their application to studying Nrf2-mediated neuroprotective pathways and therapeutics in neurodegeneration. Br J Clin Pharmacol 2013; 75:907-18. [PMID: 23126226 PMCID: PMC3612708 DOI: 10.1111/bcp.12022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/28/2012] [Indexed: 02/07/2023] Open
Abstract
Glia, including astrocytes, are increasingly at the forefront of neurodegenerative research for their role in the modulation of neuronal function and survival. Improved understanding of underlying disease mechanisms, including the role of the cellular environment in neurodegeneration, is central to therapeutic development for these currently untreatable diseases. In these endeavours, experimental models that more closely reproduce the human condition have the potential to facilitate the transition between experimental studies in model organisms and patient trials. In this review we discuss the growing role of astrocytes in neurodegenerative diseases, and how astrocytes generated from human pluripotent stem cells represent a useful tool for analyzing astrocytic signalling and influence on neuronal function.
Collapse
Affiliation(s)
- Kunal Gupta
- Anne McLaren Laboratory for Regenerative Medicine & Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | | | |
Collapse
|
99
|
Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of Alzheimer's disease. Mech Ageing Dev 2013; 134:486-95. [PMID: 24012631 DOI: 10.1016/j.mad.2013.08.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/20/2013] [Accepted: 08/24/2013] [Indexed: 02/08/2023]
Abstract
The formation of 5-hydroxymethylcytosine (5hmC), a key intermediate of DNA demethylation, is driven by the ten eleven translocation (TET) family of proteins that oxidize 5-methylcytosine (5mC) to 5hmC. To determine whether methylation/demethylation status is altered during the progression of Alzheimer's disease (AD), levels of TET1, 5mC and subsequent intermediates, including 5hmC, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) were quantified in nuclear DNA from the hippocampus/parahippocampal gyrus (HPG) and the cerebellum of 5 age-matched normal controls, 5 subjects with preclinical AD (PCAD) and 7 late-stage AD (LAD) subjects by immunochemistry. The results showed significantly (p < 0.05) increased levels of TET1, 5mC, and 5hmC in the HPG of PCAD and LAD subjects. In contrast, levels of 5fC and 5caC were significantly (p < 0.05) decreased in the HPG of PCAD and LAD subjects. Overall, the data suggest altered methylation/demethylation patterns in vulnerable brain regions prior to the onset of clinical symptoms in AD suggesting a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- M A Bradley-Whitman
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
100
|
Santos RX, Correia SC, Zhu X, Smith MA, Moreira PI, Castellani RJ, Nunomura A, Perry G. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxid Redox Signal 2013; 18:2444-57. [PMID: 23216311 PMCID: PMC3671662 DOI: 10.1089/ars.2012.5039] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimer's disease (AD), is very well known. RECENT ADVANCES A considerable amount of evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Concomitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) machinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD progression. CRITICAL ISSUES The accumulation of oxidized mtDNA bases during aging increases the risk of sporadic AD, an event that is much less relevant in the familial forms of the disease. This aspect is critical for the interpretation of data arising from tissue of AD patients and animal models of AD, as the major part of animal models rely on mutations in genes associated with familial forms of the disease. FUTURE DIRECTIONS Further investigation is important to unveil the role of mtDNA and BER in aging brain and AD in order to design more effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|