51
|
Zhang L, Huang D, Shen D, Zhang C, Ma Y, Babcock SA, Chen B, Ren J. Inhibition of protein kinase C βII isoform ameliorates methylglyoxal advanced glycation endproduct-induced cardiomyocyte contractile dysfunction. Life Sci 2013; 94:83-91. [PMID: 24269213 DOI: 10.1016/j.lfs.2013.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 01/02/2023]
Abstract
AIMS Accumulation of advanced glycation endproduct (AGE) contributes to diabetic complication including diabetic cardiomyopathy although the precise underlying mechanism still remains elusive. Recent evidence depicted a pivotal role of protein kinase C (PKC) in diabetic complications. To this end, this study was designed to examine if PKCβII contributes to AGE-induced cardiomyocyte contractile and intracellular Ca(2+) aberrations. MAIN METHODS Adult rat cardiomyocytes were incubated with methylglyoxal-AGE (MG-AGE) in the absence or presence of the PKCβII inhibitor LY333531 for 12h. Contractile and intracellular Ca(2+) properties were assessed using an IonOptix system including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), rise in intracellular Ca(2+) Fura-2 fluorescence intensity and intracellular Ca(2+) decay. Oxidative stress, O2(-) production and mitochondrial integrity were examined using TBARS, fluorescence imaging, aconitase activity and Western blotting. KEY FINDINGS MG-AGE compromised contractile and intracellular Ca(2+) properties including reduced PS, ±dL/dt, prolonged TPS and TR90, decreased electrically stimulated rise in intracellular Ca(2+) and delayed intracellular Ca(2+) clearance, the effects of which were ablated by the PKCβII inhibitor LY333531. Inhibition of PKCβII rescued MG-AGE-induced oxidative stress, O2(-) generation, cell death, apoptosis and mitochondrial injury (reduced aconitase activity, UCP-2 and PGC-1α). In vitro studies revealed that PKCβII inhibition-induced beneficial effects were replicated by the NADPH oxidase inhibitor apocynin and were mitigated by the mitochondrial uncoupler FCCP. SIGNIFICANCE These findings implicated the therapeutic potential of specific inhibition of PKCβII isoform in the management of AGE accumulation-induced myopathic anomalies.
Collapse
Affiliation(s)
- Liwei Zhang
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China.
| | - Dangsheng Huang
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Dong Shen
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Chunhong Zhang
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Yongjiang Ma
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Sara A Babcock
- University of Wyoming College of Health Sciences, Laramie, WY 82071, United States
| | - Bingyang Chen
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, United States; Department of Cardiology, Xijing Hospital, Fourth Military Medical University Xi'an, 710032, China.
| |
Collapse
|
52
|
Zhao Y, Zhang L, Qiao Y, Zhou X, Wu G, Wang L, Peng Y, Dong X, Huang H, Si L, Zhang X, Zhang L, Li J, Wang W, Zhou L, Gao X. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. PLoS One 2013; 8:e75927. [PMID: 24086665 PMCID: PMC3782439 DOI: 10.1371/journal.pone.0075927] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 08/22/2013] [Indexed: 12/29/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM). In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ)-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1) or mutant HO-1 (Tg-mutHO-1). The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV) function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt) and AMP-activated protein kinase (AMPK) phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry, Medical College of Qinghai University, Xining, Qinghai, China
| | - Lina Zhang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yu Qiao
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoling Zhou
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guodong Wu
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lujing Wang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yahui Peng
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingli Dong
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Huang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lining Si
- Department of Critical-Care Medicine, Affiliated Hospital of Medicine School of Qinghai University, Xining, Qinghai, China
| | - Xueying Zhang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jihong Li
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Wang
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lingyun Zhou
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (LZ); (XG)
| | - Xu Gao
- Department of Biochemistry, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (LZ); (XG)
| |
Collapse
|
53
|
Shi L, Chen H, Yu X, Wu X. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation. Mol Cell Biochem 2013; 383:253-9. [DOI: 10.1007/s11010-013-1773-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/02/2013] [Indexed: 01/27/2023]
|
54
|
Pan LL, Liu XH, Shen YQ, Wang NZ, Xu J, Wu D, Xiong QH, Deng HY, Huang GY, Zhu YZ. Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol 2013; 168:3770-8. [PMID: 23830348 DOI: 10.1016/j.ijcard.2013.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 04/29/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myocardial fibrosis plays a pivotal role in the development of heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potent cardioprotective properties; however, whether H2S is involved in fibrotic process remains unknown. This study aimed to explore the role of H2S in the process of cardiac fibrosis and the underlying mechanisms. METHODS Myocardial infarction (MI) was established in rats by ligation of coronary artery. Activation of rat neonatal cardiac fibroblasts was induced by angiotensin II (Ang II). Fibrotic responses in ischemic myocardium and in Ang II-stimulated cardiac fibroblasts were examined. The effects of sodium hydrosulfide (NaHS, an exogenous H2S donor) on NADPH oxidase 4 (Nox4), reactive oxygen species (ROS) production, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, heme oxygenase-1 (HO-1), and cystathionine γ-lyase (CSE) were tested to elucidate the protective mechanisms of H2S on fibrotic response. RESULTS NaHS treatment inhibited Ang II-induced expression of α-smooth muscle actin, connective tissue growth factor (CTGF), and type I collagen and upregulated expression of HO-1 in cardiac fibroblasts. Ang II-induced Nox4 expression in cardiac fibroblasts was quenched by NaHS and this was associated with a decreased ROS production and reduced ERK1/2 phosphorylation and CTGF expression. In vivo studies using MI model indicated that NaHS administration attenuated Nox4 expression and fibrotic response. Moreover, NaHS therapy also prevented cardiac inflammatory response accompanied by increases in HO-1 and CSE expression. CONCLUSIONS The beneficial effect of H2S, at least in part, was associated with a decrease of Nox4-ROS-ERK1/2 signaling axis and an increase in HO-1 expression.
Collapse
Affiliation(s)
- Li-Long Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
56
|
Wang Z, Zhang Y, Guo J, Jin K, Li J, Guo X, Scott GI, Zheng Q, Ren J. Inhibition of protein kinase C βII isoform rescues glucose toxicity-induced cardiomyocyte contractile dysfunction: role of mitochondria. Life Sci 2013; 93:116-24. [PMID: 23770211 DOI: 10.1016/j.lfs.2013.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/16/2013] [Accepted: 06/02/2013] [Indexed: 12/28/2022]
Abstract
AIMS Hyperglycemia leads to cytotoxicity in the heart. Although theories were postulated for glucose toxicity-induced cardiomyocyte dysfunction including oxidative stress, the mechanism involved still remains unclear. Recent evidence has depicted a role of protein kinase C (PKC) in diabetic complications while high concentrations of glucose stimulate PKC. This study examined the role of PKCβII in glucose toxicity-induced cardiomyocyte contractile and intracellular Ca(2+) aberrations. MAIN METHODS Adult rat cardiomyocytes were maintained in normal (NG, 5.5 mM) or high glucose (HG, 25.5 mM) medium for 12 h. Contractile and intracellular Ca(2+) properties were measured using a video edge-detection system including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), rise in intracellular Ca(2+) Fura-2 fluorescence intensity and intracellular Ca(2+) decay. Production of ROS/O2(-) and mitochondrial integrity were examined using fluorescence imaging, aconitase activity and Western blotting. KEY FINDINGS High glucose triggered abnormal contractile and intracellular Ca(2+) properties including reduced PS, ±dL/dt, prolonged TR90, decreased electrically-stimulated rise in intracellular Ca(2+) and delayed intracellular Ca(2+) clearance, the effects of which were ablated by the PKCβII inhibitor LY333531. Inhibition of PKCβII rescued glucose toxicity-induced generation of ROS and O2(-), apoptosis, cell death and mitochondrial injury (reduced aconitase activity, UCP-2 and PGC-1α). In vitro studies revealed that PKCβII inhibition-induced beneficial effects were mimicked by the NADPH oxidase inhibitor apocynin and were canceled off by mitochondrial uncoupling using FCCP. SIGNIFICANCE These findings suggest the therapeutic potential of specific inhibition of PKCβII isoform in the management of hyperglycemia-induced cardiac complications.
Collapse
Affiliation(s)
- Zikuan Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Shi L, Yu X, Yang H, Wu X. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways. PLoS One 2013; 8:e66781. [PMID: 23776698 PMCID: PMC3680386 DOI: 10.1371/journal.pone.0066781] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023] Open
Abstract
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Long Shi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Yu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
58
|
Hesperetin protects against cardiac remodelling induced by pressure overload in mice. J Mol Histol 2013; 44:575-85. [PMID: 23719775 DOI: 10.1007/s10735-013-9514-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Cardiac remodelling is a major determinant of heart failure (HF) and is characterised by cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. Hesperetin, which belongs to the flavonoid subgroup of citrus flavonoids, is the main flavonoid in oranges and possesses multiple pharmacological properties. However, its role in cardiac remodelling remains unknown. We determined the effect of hesperetin on cardiac hypertrophy, fibrosis and heart function using an aortic banding (AB) mouse. Male, 8-10-week-old, wild-type C57 mice with or without oral hesperetin administration were subjected to AB or a sham operation. Our data demonstrated that hesperetin protected against cardiac hypertrophy, fibrosis and dysfunction induced by AB, as assessed by heart weigh/body weight, lung weight/body weight, heart weight/tibia length, echocardiographic and haemodynamic parameters, histological analysis, and gene expression of hypertrophic and fibrotic markers. Also, hesperetin attenuated oxidative stress and myocytes apoptosis induced by AB. The inhibitory effect of hesperetin on cardiac remodelling was mediated by blocking PKCα/βII-AKT, JNK and TGFβ1-Smad signalling pathways. In conclusion, we found that the orange flavonoid hesperetin protected against cardiac remodelling induced by pressure overload via inhibiting cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. These findings suggest a potential therapeutic drug for cardiac remodelling and HF.
Collapse
|
59
|
Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure. Radiother Oncol 2013; 106:404-10. [PMID: 23522698 DOI: 10.1016/j.radonc.2013.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/19/2012] [Accepted: 01/29/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. METHODS C57BL/6 and atherosclerosis-prone ApoE(-/-) mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. RESULTS The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE(-/-) mice. In ApoE(-/-), no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. CONCLUSION This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle.
Collapse
|
60
|
Liu T, Korantzopoulos P, Li G. Antioxidant therapies for the management of atrial fibrillation. Cardiovasc Diagn Ther 2012; 2:298-307. [PMID: 24282730 PMCID: PMC3839156 DOI: 10.3978/j.issn.2223-3652.2012.10.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/31/2012] [Indexed: 12/20/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice, representing a major public health problem. Recent evidence suggests oxidative stress may play an important role in the pathogenesis and perpetuation of AF. In the past few years, experimental data and clinical evidence have tested the concept of antioxidant therapies to prevent AF. Besides statins, ACE-inhibitors (ACEIs) and/or angiotensin-receptor blockers (ARBs), and omega-3 polyunsaturated fatty acids, several other interventions with antioxidant properties, such as Vitamin C and E, thiazolidinediones, N-acetylcysteine, probucol, nitric oxide donors or precursors, NADPH oxidase inhibitors, Xanthine oxidase inhibitors have emerged as novel strategies for the management of AF. We aim to review recent evidence regarding antioxidant therapies in the prevention and treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | | | - Guangping Li
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
61
|
Sartoretto JL, Kalwa H, Shiroto T, Sartoretto SM, Pluth MD, Lippard SJ, Michel T. Role of Ca2+ in the control of H2O2-modulated phosphorylation pathways leading to eNOS activation in cardiac myocytes. PLoS One 2012; 7:e44627. [PMID: 22970272 PMCID: PMC3435284 DOI: 10.1371/journal.pone.0044627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022] Open
Abstract
Nitric oxide (NO) and hydrogen peroxide (H2O2) play key roles in physiological and pathological responses in cardiac myocytes. The mechanisms whereby H2O2–modulated phosphorylation pathways regulate the endothelial isoform of nitric oxide synthase (eNOS) in these cells are incompletely understood. We show here that H2O2 treatment of adult mouse cardiac myocytes leads to increases in intracellular Ca2+ ([Ca2+]i), and document that activity of the L-type Ca2+ channel is necessary for the H2O2-promoted increase in sarcomere shortening and of [Ca2+]i. Using the chemical NO sensor Cu2(FL2E), we discovered that the H2O2-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca2+ channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase kinase 1/2 (MEK1/2). Moreover, H2O2-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both an increase in [Ca2+]i as well as the activation of protein kinase C (PKC). We also found that H2O2-promoted cardiac myocyte eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca2+ channel blocker nifedipine. We have previously shown that kinase Akt is also involved in H2O2-promoted eNOS phosphorylation. Here we present evidence documenting that H2O2-promoted Akt phosphorylation is dependent on activation of the L-type Ca2+ channel, but is independent of PKC. These studies establish key roles for Ca2+- and PKC-dependent signaling pathways in the modulation of cardiac myocyte eNOS activation by H2O2.
Collapse
Affiliation(s)
- Juliano L. Sartoretto
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hermann Kalwa
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takashi Shiroto
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simone M. Sartoretto
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael D. Pluth
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|