51
|
Murabito JM, Rong J, Lunetta KL, Huan T, Lin H, Zhao Q, Freedman JE, Tanriverdi K, Levy D, Larson MG. Cross-sectional relations of whole-blood miRNA expression levels and hand grip strength in a community sample. Aging Cell 2017; 16:888-894. [PMID: 28597569 PMCID: PMC5506437 DOI: 10.1111/acel.12622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community-based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed-effects regression modeling of grip strength (kg) versus continuous miRNA 'Cq' values and versus binary miRNA expression was performed. We conducted an integrative miRNA-mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA-grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR-20a-5p (FDR q 1.8 × 10-6 ) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR-126-3p, miR-30a-5p, and miR-30d-5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin-mediated proteolysis. Our comprehensive assessment in a community-based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength.
Collapse
Affiliation(s)
- Joanne M. Murabito
- The Framingham Heart StudyFraminghamMAUSA
- Department of Medicine, Section of General Internal MedicineBoston University School of MedicineBostonMAUSA
| | - Jian Rong
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Tianxiao Huan
- The Framingham Heart StudyFraminghamMAUSA
- The Population Sciences BranchDivision of Intramural Research, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Honghuang Lin
- Section of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMAUSA
| | - Qiang Zhao
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Jane E. Freedman
- Cardiology DivisionDepartment of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kahraman Tanriverdi
- Cardiology DivisionDepartment of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Daniel Levy
- The Framingham Heart StudyFraminghamMAUSA
- The Population Sciences BranchDivision of Intramural Research, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Martin G. Larson
- The Framingham Heart StudyFraminghamMAUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| |
Collapse
|
52
|
Nunez Lopez YO, Garufi G, Seyhan AA. Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. MOLECULAR BIOSYSTEMS 2017; 13:106-121. [PMID: 27869909 DOI: 10.1039/c6mb00596a] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Today obesity and type 2 diabetes (T2D) have both reached epidemic proportions. However, our current understanding of the primary mechanisms leading to these diseases is still limited due to the complex multifactorial nature of the underlying phenomena. We hypothesize that the levels of specific cytokines and miRNAs vary across the diabetes spectrum and unique signatures associated with them may serve as early biomarkers of the disease and provide insights into respective pathogenetic mechanisms. In this study, we measured the circulating levels of cytokines and microRNAs (miRNAs) in lean and obese humans with prediabetes (n = 21), T2D (n = 17), and healthy controls (n = 20) (ORIGINS trial, NCT02226640). Data were analyzed by fitting linear models adjusted for confounding variables (BMI, age, and gender in the diabetes context and age, gender, and diabetes status in the obesity context) and implementing nonparametric randomization-based tests for statistical inference. Group differences and correlations (r > 0.3) between variables with P < 0.05 were considered significant. False discovery rates (FDR) correcting for multiple testing were calculated using the Benjamini-Hochberg correction. We found a number of circulating cytokines and miRNAs deregulated in subjects with obesity, prediabetes, and T2D. Specifically, cytokines IL-6, IL-8, IL-10, IL-12, and SFRP4, as well as miRNAs miR-21, miR-24.1, miR-27a, miR-28-3p, miR-29b, miR-30d, miR-34a, miR-93, miR-126, miR-146a, miR-148, miR-150, miR-155, and miR-223, significantly changed across the diabetes spectrum, and were associated with measures of pancreatic islet β cell function and glycemic control, among others. Notably, SFRP4 was the only studied cytokine that was significantly associated with obesity, prediabetes, and T2D, which underscores the important role of this molecule during disease development and progression. Our data suggest that changes in circulating miRNAs and cytokines may have clinical utility as biomarkers of prediabetes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA.
| | - Gabriella Garufi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA.
| | - Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA. and Sanford
- Burnham Medical Research Institute, Orlando, FL, USA and Massachusetts Institute of Technology, Chemical Engineering Department Cambridge, MA, USA
| |
Collapse
|
53
|
Gong W, Huang Y, Xie J, Wang G, Yu D, Sun X. Genome-wide identification of novel microRNAs from genome sequences using computational approach in the mudskipper (Boleophthalmus pectinirostris). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
54
|
Hofmann P, Tschakert G. Intensity- and Duration-Based Options to Regulate Endurance Training. Front Physiol 2017; 8:337. [PMID: 28596738 PMCID: PMC5442222 DOI: 10.3389/fphys.2017.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/08/2017] [Indexed: 02/01/2023] Open
Abstract
The regulation of endurance training is usually based on the prescription of exercise intensity. Exercise duration, another important variable of training load, is rarely prescribed by individual measures and mostly set from experience. As the specific exercise duration for any intensity plays a substantial role regarding the different kind of cellular stressors, degree, and kind of fatigue as well as training effects, concepts integrating the prescription of both intensity and duration within one model are needed. An according recent approach was the critical power concept which seems to have a physiological basis; however, the mathematical approach of this concept does not allow applying the three zones/two threshold model of metabolism and its different physiological consequences. Here we show the combination of exercise intensity and duration prescription on an individual basis applying the power/speed to distance/time relationship. The concept is based on both the differentiation of intensities by two lactate or gas exchange variables derived turn points, and on the relationship between power (or velocity) and duration (or distance). The turn points define three zones of intensities with distinct acute metabolic, hormonal, and cardio-respiratory responses for endurance exercise. A maximal duration exists for any single power or velocity such as described in the power-duration relationship. Using percentages of the maximal duration allows regulating fatigue, recovery time, and adaptation for any single endurance training session. Four domains of duration with respect to induced fatigue can be derived from maximal duration obtained by the power-duration curve. For any micro-cycle, target intensities and durations may be chosen on an individual basis. The model described here is the first conceptual framework of integrating physiologically defined intensities and fatigue related durations to optimize high-performance exercise training.
Collapse
Affiliation(s)
- Peter Hofmann
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of GrazGraz, Austria
| | - Gerhard Tschakert
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of GrazGraz, Austria
| |
Collapse
|
55
|
Cui S, Sun B, Yin X, Guo X, Chao D, Zhang C, Zhang CY, Chen X, Ma J. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci Rep 2017; 7:2203. [PMID: 28526870 PMCID: PMC5438360 DOI: 10.1038/s41598-017-02294-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Circulating microRNAs (c-miRNAs) in human plasma have been described as a potential marker of exercise. The present study investigated the effects of three acute resistance training (RT) protocols on the time-course changes of the c-miRNAs profiles in young males. The subjects (n = 45) were randomly divided into three groups: muscular strength endurance (SE), muscular hypertrophy (MH) and maximum strength (MS). Venous blood samples were obtained before exercise and immediately, 1 h and 24 h after each RT protocol to assess the following biological parameters: c-miRNAs, anabolic and catabolic hormones, inflammatory cytokines and muscle damage markers. The results revealed that the levels of two c-miRNAs (miR-208b and miR-532), six c-miRNAs (miR-133a, miR-133b, miR-206, miR-181a, miR-21 and miR-221) and two c-miRNAs (miR-133a and miR-133b) changed significantly in response to the SE, MH and MS protocols (p < 0.05), respectively. The nature and dynamic processes of the c-miRNAs response were likely influenced by the RT modality and intensity. Moreover, miR-532 was negatively correlated with insulin-like growth factor-1 and positively correlated with interleukin-10, whereas miR-133a was negatively correlated with cortisol and positively correlated with testosterone/cortisol. These findings suggest that these c-miRNAs may serve as markers for monitoring the RT responses.
Collapse
Affiliation(s)
- Shufang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Biao Sun
- Department of Exercise and Heath, Nanjing sports Institute, 8 Linggusi Road Nanjing, Jiangsu, 210014, China
| | - Xin Yin
- Department of Exercise and Heath, Nanjing sports Institute, 8 Linggusi Road Nanjing, Jiangsu, 210014, China
| | - Xia Guo
- The Lab of Military Conditioning and Motor Function Assessment, the PLA University of Science and Technology, 60 Shuang Long Jie Road, Nanjing, Jiangsu, 211101, China
| | - Dingming Chao
- The Lab of Military Conditioning and Motor Function Assessment, the PLA University of Science and Technology, 60 Shuang Long Jie Road, Nanjing, Jiangsu, 211101, China
| | - Chunni Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.,Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.
| | - Jizheng Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu, 210046, China. .,The Lab of Military Conditioning and Motor Function Assessment, the PLA University of Science and Technology, 60 Shuang Long Jie Road, Nanjing, Jiangsu, 211101, China.
| |
Collapse
|
56
|
Nunez Lopez YO, Coen PM, Goodpaster BH, Seyhan AA. Gastric bypass surgery with exercise alters plasma microRNAs that predict improvements in cardiometabolic risk. Int J Obes (Lond) 2017; 41:1121-1130. [PMID: 28344345 DOI: 10.1038/ijo.2017.84] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Roux-en-Y gastric bypass (RYGB) surgery improves insulin sensitivity (SI) and β-cell function in obese non-diabetic subjects. Exercise also improves SI and may be an effective adjunct therapy to RYGB surgery. However, the mechanisms by which exercise or weight loss improve peripheral SI after RYGB surgery are unclear. We hypothesized that microRNAs (miRNAs) mediate at least some of the regulatory processes driving such mechanisms. Consequently, this work aimed at profiling plasma miRNAs in participants of the Physical Activity Following Surgery Induced Weight Loss study (clinicaltrials.gov identifier: NCT00692367), to assess whether miRNA levels track with improvements in SI and cardiometabolic risk factors. SUBJECTS/METHODS Ninety-four miRNAs implicated in metabolism were profiled in plasma samples from 22 severely obese subjects who were recruited 1-3 months after RYGB surgery and followed for 6 months of RYGB surgery-induced weight loss, with (exercise program (EX), N=11) or without (CON, N=11) an exercise training intervention. The subjects were selected, considering a priori sample size calculations, among the participants in the parent study. Mixed-effect modeling for repeated measures and partial correlation analysis was implemented in the R environment for statistical analysis. RESULTS Mirroring results in the parent trial, both groups experienced significant weight loss and improvements in cardiometabolic risk. In the CON group, weight loss significantly altered the pattern of circulating miR-7, miR-15a, miR-34a, miR-106a, miR-122 and miR-221. In the EX group, a distinct miRNA signature was altered: miR-15a, miR-34a, miR-122, miR-135b, miR-144, miR-149 and miR-206. Several miRNAs were significantly associated with improvements in acute insulin response, SI, and other cardiometabolic risk factors. CONCLUSIONS These findings present novel insights into the RYGB surgery-induced molecular changes and the effects of mild exercise to facilitate and/or maintain the benefits of a 'comprehensive' weight-loss intervention with concomitant improvements in cardiometabolic functions. Notably, we show a predictive value for miR-7, miR-15a, miR-106b and miR-135b.
Collapse
Affiliation(s)
- Y O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - P M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL, USA
| | - B H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL, USA
| | - A A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL, USA.,Massachusetts Institute of Technology, Chemical Engineering Department Cambridge, MA, USA
| |
Collapse
|
57
|
Margolis LM, McClung HL, Murphy NE, Carrigan CT, Pasiakos SM. Skeletal Muscle myomiR Are Differentially Expressed by Endurance Exercise Mode and Combined Essential Amino Acid and Carbohydrate Supplementation. Front Physiol 2017; 8:182. [PMID: 28386239 PMCID: PMC5362638 DOI: 10.3389/fphys.2017.00182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/09/2017] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle microRNAs (myomiR) expression is modulated by exercise, however, the influence of endurance exercise mode, combined with essential amino acid and carbohydrate (EAA+CHO) supplementation are not well defined. This study determined the effects of weighted versus non-weighted endurance exercise, with or without EAA+CHO ingestion on myomiR expression and their association with muscle protein synthesis (MPS). Twenty five adults performed 90 min of metabolically-matched (2.2 VO2 L·m-1) load carriage (LC; performed on a treadmill wearing a vest equal to 30% of individual body mass) or cycle ergometry (CE) exercise, during which EAA+CHO (10 g EAA and 46 g CHO) or non-nutritive control (CON) drinks were consumed. Expression of myomiR (RT-qPCR) were determined at rest (PRE), immediately post-exercise (POST), and 3 h into recovery (REC). Muscle protein synthesis (2H5-phenylalanine) was measured during exercise and recovery. Relative to PRE, POST, and REC expression of miR-1-3p, miR-206, miR-208a-5, and miR-499 was lower (P < 0.05) for LC compared to CE, regardless of dietary treatment. Independent of exercise mode, miR-1-3p and miR-208a-5p expression were lower (P < 0.05) after ingesting EAA+CHO compared to CON. Expression of miR-206 was highest for CE-CON than any other treatment (exercise-by-drink, P < 0.05). Common targets of differing myomiR were identified as markers within mTORC1 signaling, and miR-206 and miR-499 were inversely associated with MPS rates immediately post-exercise. These findings suggest the alterations in myomiR expression between exercise mode and EAA+CHO intake may in part be due to differing MPS modulation immediately post-exercise.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental MedicineNatick, MA, USA; Oak Ridge Institute for Science and EducationOak Ridge, TN, USA
| | - Holly L McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - Christopher T Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental MedicineNatick, MA, USA; Oak Ridge Institute for Science and EducationOak Ridge, TN, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| |
Collapse
|
58
|
Sapp RM, Shill DD, Roth SM, Hagberg JM. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol (1985) 2016; 122:702-717. [PMID: 28035018 DOI: 10.1152/japplphysiol.00982.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that influence biological processes by regulating gene expression after transcription. It was recently discovered that miRNAs are released into the circulation (ci-miRNAs) where they are highly stable and can act as intercellular messengers to affect physiological processes. This review provides a comprehensive summary of the studies to date that have investigated the effects of acute exercise and exercise training on ci-miRNAs in humans. Findings indicate that specific ci-miRNAs are altered in response to different protocols of acute and chronic exercise in both healthy and diseased populations. In some cases, altered ci-miRNAs correlate with fitness and health parameters, suggesting causal mechanisms by which ci-miRNAs may facilitate adaptations to exercise training. However, strong data supporting such mechanisms are lacking. Thus, a purpose of this review is to guide future studies by discussing current and novel proposed roles for ci-miRNAs in adaptations to exercise training. In addition, substantial, fundamental gaps in the field need to be addressed. The ultimate goal of this research is that an understanding of the roles of ci-miRNAs in physiological adaptations to exercise training will one day translate to therapeutic interventions.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Daniel D Shill
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Stephen M Roth
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - James M Hagberg
- Department of Kinesiology, University of Maryland, College Park, Maryland
| |
Collapse
|
59
|
Circulating MicroRNAs as Potential Biomarkers of Exercise Response. Int J Mol Sci 2016; 17:ijms17101553. [PMID: 27782053 PMCID: PMC5085619 DOI: 10.3390/ijms17101553] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 02/08/2023] Open
Abstract
Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs). miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs) associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.
Collapse
|
60
|
Moran CN, Pitsiladis YP. Tour de France Champions born or made: where do we take the genetics of performance? J Sports Sci 2016; 35:1411-1419. [PMID: 27498724 DOI: 10.1080/02640414.2016.1215494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclists in the Tour de France are endurance specialists. Twin and family studies have shown that approximately 50% of the variance in a number of performance-related phenotypes (whether measured at baseline, i.e., natural talent, or in response to training) including those important to cycling can be explained by genetic variation. Research into the specific genetic variants that are responsible has identified over 200 genes containing common genetic variants involved in the genetic predisposition to physical performance. However, typically these explain only a small portion of the variance, perhaps 1-2% and collectively they rarely explain anything approaching the 50% of the variance identified in the twin and family studies. Thus, there is a gap in our understanding of the relationship between heritability and performance. This gap may be bridged by investigation of rare variants or epigenetic variation or by altering study designs through increased collaborations to pool existing cohorts together. Initial findings from such efforts show promising results. This mini-review will touch on the genetics and epigenetics of sporting performance, how they relate to cyclists in the Tour de France and where best future efforts may be directed as well as discuss some preliminary research findings.
Collapse
Affiliation(s)
- Colin N Moran
- a Physiology, Exercise and Nutrition Research Group , University of Stirling , Stirling , Scotland
| | - Yannis P Pitsiladis
- b FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research , University of Brighton , Eastbourne , England
| |
Collapse
|
61
|
Circulating microRNAs: The Future of Biomarkers in Anti-doping Field. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 888:401-8. [PMID: 26663194 DOI: 10.1007/978-3-319-22671-2_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs have been proposed as biomarkers of disease, including diagnosis, prognosis, and monitoring of treatment responses. These circulating miRNAs are highly stable in several body fluids, including plasma and serum; hence, in view of their potential use as novel, non-invasive biomarkers, the profiles of circulating miRNAs have been explored in the field of anti-doping. This chapter describes the enormous potential of circulating miRNAs as a new class of biomarkers for the detection of doping substances, and highlights the advantages of measuring these stable species over other methods that have already been implemented in anti-doping regimes. Incorporating longitudinal measurements of circulating miRNAs into the Athlete Biological Passport is proposed as an efficient strategy for the implementation of these new biomarkers. Furthermore, potential challenges related to the transition of measurements of circulating miRNAs from research settings to practical anti-doping applications are presented.
Collapse
|
62
|
Huang QK, Qiao HY, Fu MH, Li G, Li WB, Chen Z, Wei J, Liang BS. MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling. Med Sci Monit 2016; 22:1161-70. [PMID: 27054781 PMCID: PMC4829125 DOI: 10.12659/msm.897909] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Denervation-induced skeletal muscle atrophy results in significant biochemical and physiological changes potentially leading to devastating outcomes including increased mortality. Effective treatments for skeletal muscle diseases are currently not available. Muscle-specific miRNAs, such as miR-206, play an important role in the regulation of muscle regeneration. The aim of the present study was to examine the beneficial effects of miR-206 treatment during the early changes in skeletal muscle atrophy, and to study the underlying signaling pathways in a rat skeletal muscle atrophy model. Material/Methods The rat denervation-induced skeletal muscle atrophy model was established. miRNA-206 was overexpressed with or without TGF-β1 inhibitor in the rats. The mRNA and protein expression of HDAC4, TGF-β1, and Smad3 was determined by real-time PCR and western blot. The gastrocnemius muscle cross-sectional area and relative muscle mass were measured. MyoD1, TGF-β1, and Pax7 were determined by immunohistochemical staining. Results After sciatic nerve surgical transection, basic muscle characteristics, such as relative muscle weight, deteriorated continuously during a 2-week period. Injection of miR-206 (30 μg/rat) attenuated morphological and physiological deterioration of muscle characteristics, prevented fibrosis effectively, and inhibited the expression of TGF-β1 and HDAC4 as assessed 2 weeks after denervation. Moreover, miR-206 treatment increased the number of differentiating (MyoD1+/Pax7+) satellite cells, thereby protecting denervated muscles from atrophy. Interestingly, the ability of miR-206 to govern HDAC4 expression and to attenuate muscle atrophy was weakened after pharmacological blockage of the TGF-β1/Smad3 axis. Conclusions TGF-β1/Smad3 signaling pathway is one of the crucial signaling pathways by which miR-206 counteracts skeletal muscle atrophy by affecting proliferation and differentiation of satellite cells. miR-206 may be a potential target for development of a new strategy for treatment of patients with early denervation-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Qiang Kai Huang
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Hu-Yuan Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Ming-Huan Fu
- Division of Cardiovascular Disease, Department of Gerontology, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Gang Li
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Wen-Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Zhi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Jian Wei
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Bing-Sheng Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
63
|
Cui SF, Wang C, Yin X, Tian D, Lu QJ, Zhang CY, Chen X, Ma JZ. Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise. Front Physiol 2016; 7:102. [PMID: 27047388 PMCID: PMC4796030 DOI: 10.3389/fphys.2016.00102] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/03/2016] [Indexed: 01/08/2023] Open
Abstract
High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used interchangeably. Further work is needed to reveal the functional significance and signaling mechanisms behind changes in c-miRNA turnover during exercise.
Collapse
Affiliation(s)
- Shu F Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University Nanjing, China
| | - Cheng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing UniversityNanjing, China; Department of Clinical Laboratory, Jinling HospitalNanjing, China
| | - Xin Yin
- The Lab of Military Conditioning and Motor Function Assessment, The PLA University of Science and Technology Nanjing, China
| | - Dong Tian
- The Lab of Military Conditioning and Motor Function Assessment, The PLA University of Science and Technology Nanjing, China
| | - Qiu J Lu
- The Lab of Military Conditioning and Motor Function Assessment, The PLA University of Science and Technology Nanjing, China
| | - Chen Y Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University Nanjing, China
| | - Ji Z Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing UniversityNanjing, China; The Lab of Military Conditioning and Motor Function Assessment, The PLA University of Science and TechnologyNanjing, China
| |
Collapse
|
64
|
Camera DM, Ong JN, Coffey VG, Hawley JA. Selective Modulation of MicroRNA Expression with Protein Ingestion Following Concurrent Resistance and Endurance Exercise in Human Skeletal Muscle. Front Physiol 2016; 7:87. [PMID: 27014087 PMCID: PMC4779983 DOI: 10.3389/fphys.2016.00087] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 01/05/2023] Open
Abstract
We examined changes in the expression of 13 selected skeletal muscle microRNAs (miRNAs) implicated in exercise adaptation responses following a single bout of concurrent exercise. In a randomized cross-over design, seven healthy males undertook a single trial consisting of resistance exercise (8 × 5 leg extension, 80% 1 Repetition Maximum) followed by cycling (30 min at ~70% VO2peak) with either post-exercise protein (PRO: 25 g whey protein) or placebo (PLA) ingestion. Muscle biopsies (vastus lateralis) were obtained at rest and 4 h post-exercise. Detection of miRNA via quantitative Polymerase Chain Reaction (qPCR) revealed post-exercise increases in miR-23a-3p (~90%), miR-23b-3p (~39%), miR-133b (~80%), miR-181-5p (~50%), and miR-378-5p (~41%) at 4 h post-exercise with PRO that also resulted in higher abundance compared to PLA (P < 0.05). There was a post-exercise decrease in miR-494-3p abundance in PLA only (~88%, P < 0.05). There were no changes in the total abundance of target proteins post-exercise or between conditions. Protein ingestion following concurrent exercise can modulate the expression of miRNAs implicated in exercise adaptations compared to placebo. The selective modulation of miRNAs with target proteins that may prioritize myogenic compared to oxidative/metabolic adaptive responses indicate that miRNAs can play a regulatory role in the molecular machinery enhancing muscle protein synthesis responses with protein ingestion following concurrent exercise.
Collapse
Affiliation(s)
- Donny M Camera
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic UniversityMelbourne, VIC, Australia; Exercise and Nutrition Research Group, School of Medical Sciences, Royal Melbourne Institute of TechnologyMelbourne, VIC, Australia
| | - Jun N Ong
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University Melbourne, VIC, Australia
| | - Vernon G Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University Gold Coast, QLD, Australia
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic UniversityMelbourne, VIC, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores UniversityLiverpool, UK
| |
Collapse
|
65
|
Chikenji A, Ando H, Nariyama M, Suga T, Iida R, Gomi K. MyoD is regulated by the miR-29a- Tet1 pathway in C2C12 myoblast cells. J Oral Sci 2016; 58:219-29. [DOI: 10.2334/josnusd.15-0684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Akiyoshi Chikenji
- Department of Periodontology, Tsurumi University School of Dental Medicine
| | - Hitoshi Ando
- Department of Biophysics, Tsurumi University School of Dental Medicine
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine
| | - Takeo Suga
- Department of Geriatric Dentistry, Tsurumi University School of Dental Medicine
| | - Ryohei Iida
- Department of Geriatric Dentistry, Tsurumi University School of Dental Medicine
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine
| |
Collapse
|
66
|
Penna F, Pin F, Ballarò R, Baccino FM, Costelli P. Novel investigational drugs mimicking exercise for the treatment of cachexia. Expert Opin Investig Drugs 2015; 25:63-72. [PMID: 26560328 DOI: 10.1517/13543784.2016.1117072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cachexia is a syndrome characterized by body weight loss, muscle wasting and metabolic abnormalities, that frequently complicates the management of people affected by chronic diseases. No effective therapy is actually available, although several drugs are under clinical evaluation. Altered energy metabolism markedly contributes to the pathogenesis of cachexia; it can be improved by exercise, which is able to both induce anabolism and inhibit catabolism. AREAS COVERED This review focuses on exercise mimetics and their potential inclusion in combined protocols to treat cachexia. The authors pay with particular reference to the cancer-associated cachexia. EXPERT OPINION Even though exercise improves muscle phenotype, most patients retain sedentary habits which are quite difficult to disrupt. Moreover, they frequently present with chronic fatigue and comorbidities that reduce exercise tolerance. For these reasons, drugs mimicking exercise could be beneficial to those who are unable to comply with the practice of physical activity. Since some exercise mimetics may exert serious side effects, further investigations should focus on treatments which maintain their effectiveness on muscle phenotype while remaining tolerable at the same time.
Collapse
Affiliation(s)
- F Penna
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| | - F Pin
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| | - R Ballarò
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| | - F M Baccino
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy
| | - P Costelli
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| |
Collapse
|
67
|
The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 2015; 88:37-52. [PMID: 25912658 DOI: 10.1016/j.addr.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
microRNAs (miRs) are small non-protein-coding RNAs, able to post-transcriptionally regulate many genes and exert pleiotropic effects. Alteration of miR levels in tissues and in the circulation has been associated with various pathological and regenerative conditions. In this regard, tissue engineering of cardiac and skeletal muscles is a fascinating context for harnessing the complexity of miR-based circuitries and signals. In this review, we will focus on miR-driven regulation of cardiac and skeletal myogenic routes in homeostatic and challenging states. Furthermore, we will survey the intriguing perspective of exosomal and circulating miRs as novel paracrine players, potentially useful for current and future approaches of regenerative medicine for the striated muscles.
Collapse
|
68
|
Wei H, Li Z, Wang X, Wang J, Pang W, Yang G, Shen QW. microRNA-151-3p regulates slow muscle gene expression by targeting ATP2a2 in skeletal muscle cells. J Cell Physiol 2015; 230:1003-12. [PMID: 25200835 DOI: 10.1002/jcp.24793] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate the stability or translation of cognate mRNAs at the post-transcriptional level. Accumulating evidence indicates that miRNAs play important roles in many aspects of muscle function, including muscle growth and development, regeneration, contractility, and muscle fiber type plasticity. In the current study, we examined the function of miR-151-3p in myoblast proliferation and differentiation. Results show that overexpression of miR-151-3p not only upregulates myoblast proliferation, but also decreases slow muscle gene expression (such as MHC-β/slow and slow muscle troponin I) in both C2C12 myotubes and in primary cultures. Alternatively, inhibition of miR-151-3p by antisense RNA was found to upregulate MHC-β/slow expression, indicating that miR-151-3p plays a role in muscle fiber type determination. Further investigation into the underlying mechanisms revealed for the first time that miR-151-3p directly targets ATP2a2, a gene encoding for a slow skeletal and cardiac muscle specific Ca(2+) ATPase, SERCA2 thus downregulating slow muscle gene expression. Mechanisms by which the alteration in SERCA2 expression induces changes in other slow muscle gene expression levels needs to be defined in future research.
Collapse
Affiliation(s)
- Huan Wei
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
69
|
MicroRNA profiling of pericardial fluid samples from patients with heart failure. PLoS One 2015; 10:e0119646. [PMID: 25763857 PMCID: PMC4357463 DOI: 10.1371/journal.pone.0119646] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/01/2015] [Indexed: 12/20/2022] Open
Abstract
AIMS Multicellular organisms maintain vital functions through intercellular communication. Release of extracellular vesicles that carry signals to even distant target organs is one way of accomplishing this communication. MicroRNAs can also be secreted from the cells in exosomes and act as paracrine signalling molecules. In addition, microRNAs have been implicated in the pathogenesis of a large number of diseases, including cardiovascular diseases, and are considered as promising candidate biomarkers due to their relative stability and easy quantification from clinical samples. Pericardial fluid contains hormones secreted by the heart and is known to reflect the cardiac function. In this study, we sought to investigate whether pericardial fluid contains microRNAs and if so, whether they could be used to distinguish between different cardiovascular pathologies and disease stages. METHODS AND RESULTS Pericardial fluid was collected from heart failure patients during open-heart surgery. MicroRNA profiles of altogether 51 patients were measured by quantitative real-time PCR (qPCR) using Exiqon human panels I and II. On the average, 256 microRNAs were detected per sample, and 70 microRNAs out of 742 profiled microRNAs were detected in every sample. The five most abundant microRNAs in pericardial fluid were miR-21-5p, miR-451a, miR-125b-5p, let-7b-5p and miR-16-5p. No specific signatures for cardiovascular pathologies or clinically assessed heart failure stages could be detected from the profiles and, overall, microRNA profiles of the samples were found to be very similar despite the heterogeneity in the study population. CONCLUSION Measured microRNA profiles did not separate the samples according to the clinical features of the patients. However, several previously identified heart failure marker microRNAs were detected. The pericardial fluid microRNA profile appeared to be a result of an active and selective secretory process indicating that microRNAs may act as paracrine signalling factors by mediating the local crosstalk between cardiac cells.
Collapse
|
70
|
Mendias CL, Lynch EB, Gumucio JP, Flood MD, Rittman DS, Van Pelt DW, Roche SM, Davis CS. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. J Physiol 2015; 593:2037-52. [PMID: 25640143 DOI: 10.1113/jphysiol.2014.287144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022] Open
Abstract
Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN(+/+) ) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTN(Δ/Δ) ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTN(Δ/Δ) rats demonstrated 20-33% increases in mass, 35-45% increases in fibre number, 20-57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTN(Δ/Δ) muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTN(Δ/Δ) rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhang T, Birbrair A, Wang ZM, Messi ML, Marsh AP, Leng I, Nicklas BJ, Delbono O. Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol 2015; 62:7-13. [PMID: 25560803 PMCID: PMC4314447 DOI: 10.1016/j.exger.2014.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 11/26/2022]
Abstract
Regular exercise, particularly resistance training (RT), is the only therapy known to consistently improve muscle strength and quality (force per unit of mass) in older persons, but there is considerable variability in responsiveness to training. Identifying sensitive diagnostic biomarkers of responsiveness to RT may inform the design of a more efficient exercise regimen to improve muscle strength in older adults. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. We quantified six muscle specific miRNAs (miR-1, -133a, -133b, -206, -208b and -499) in both muscle tissue and blood plasma, and their relationship with knee extensor strength in seven older (age=70.5 ± 2.5 years) adults before and after 5 months of RT. MiRNAs differentially responded to RT; muscle miR-133b decreased, while all plasma miRNAs tended to increase. Percent changes in knee extensor strength with RT showed strong positive correlations with percent changes in muscle miR-133a, -133b, and -206 and with percent changes in plasma and plasma/muscle miR-499 ratio. Baseline level of plasma or plasma/muscle miR-499 ratio further predicts muscle response to RT, while changes in muscle miR-133a, -133b, and -206 may correlate with muscle TNNT1 gene alternative splicing in response to RT. Our results indicate that RT alters muscle specific miRNAs in muscle and plasma, and that these changes account for some of the variation in strength responses to RT in older adults.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Alexander Birbrair
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - María L Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Iris Leng
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Barbara J Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
72
|
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015; 72:1663-77. [PMID: 25572293 PMCID: PMC4412728 DOI: 10.1007/s00018-014-1819-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Muscle stem cell (satellite cell) activation post muscle injury is a transient and critical step in muscle regeneration. It is regulated by physiological cues, signaling molecules, and epigenetic regulatory factors. The mechanisms that coherently turn on the complex activation process shortly after trauma are just beginning to be illuminated. In this review, we will discuss the current knowledge of satellite cell activation regulation.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
73
|
Yano H, Choudhury ME, Islam A, Kobayashi K, Tanaka J. Cellular mechanotransduction of physical force and organ response to exercise-induced mechanical stimuli. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2015. [DOI: 10.7600/jpfsm.4.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Kana Kobayashi
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| |
Collapse
|
74
|
Liu N, Bassel-Duby R. Regulation of skeletal muscle development and disease by microRNAs. Results Probl Cell Differ 2015; 56:165-90. [PMID: 25344671 DOI: 10.1007/978-3-662-44608-9_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of microRNAs (miRNA) in vertebrates has uncovered new mechanisms regulating skeletal muscle development and disease. miRNAs are inhibitors and act by silencing specific mRNAs or by repressing protein translation. In many cases, miRNAs are involved in physiological or pathological stress, suggesting they function to exacerbate or protect the organism during stress or disease. Although many skeletal muscle diseases differ in clinical and pathological manifestations, they all have a common feature of dysregulation of miRNA expression. In particular, analysis of miRNA expression patterns in skeletal muscle diseases reveals miRNA signatures, showing many miRNAs are dysregulated during disease. Emerging identification of miRNA targets and involvement in genetic regulatory networks serve to reveal new regulatory pathways in skeletal muscle biology. This chapter features the findings pertaining to skeletal muscle miRNAs in skeletal muscle development and disease and highlights therapeutic applications of miRNA-based technology in diagnosis and treatment of skeletal muscle myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA,
| | | |
Collapse
|
75
|
Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli. Biomech Model Mechanobiol 2014; 14:195-215. [PMID: 25199941 DOI: 10.1007/s10237-014-0607-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 01/25/2023]
Abstract
Skeletal muscle undergoes continuous turnover to adapt to changes in its mechanical environment. Overload increases muscle mass, whereas underload decreases muscle mass. These changes are correlated with, and enabled by, structural alterations across the molecular, subcellular, cellular, tissue, and organ scales. Despite extensive research on muscle adaptation at the individual scales, the interaction of the underlying mechanisms across the scales remains poorly understood. Here, we present a thorough review and a broad classification of multiscale muscle adaptation in response to a variety of mechanical stimuli. From this classification, we suggest that a mathematical model for skeletal muscle adaptation should include the four major stimuli, overstretch, understretch, overload, and underload, and the five key players in skeletal muscle adaptation, myosin heavy chain isoform, serial sarcomere number, parallel sarcomere number, pennation angle, and extracellular matrix composition. Including this information in multiscale computational models of muscle will shape our understanding of the interacting mechanisms of skeletal muscle adaptation across the scales. Ultimately, this will allow us to rationalize the design of exercise and rehabilitation programs, and improve the long-term success of interventional treatment in musculoskeletal disease.
Collapse
|
76
|
Neves VJD, Fernandes T, Roque FR, Soci UPR, Melo SFS, de Oliveira EM. Exercise training in hypertension: Role of microRNAs. World J Cardiol 2014; 6:713-727. [PMID: 25228951 PMCID: PMC4163701 DOI: 10.4330/wjc.v6.i8.713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/25/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a complex disease that constitutes an important public health problem and demands many studies in order to understand the molecular mechanisms involving his pathophysiology. Therefore, an increasing number of studies have been conducted and new therapies are continually being discovered. In this context, exercise training has emerged as an important non-pharmacological therapy to treat hypertensive patients, minimizing the side effects of pharmacological therapies and frequently contributing to allow pharmacotherapy to be suspended. Several mechanisms have been associated with the pathogenesis of hypertension, such as hyperactivity of the sympathetic nervous system and renin-angiotensin aldosterone system, impaired endothelial nitric oxide production, increased oxygen-reactive species, vascular thickening and stiffening, cardiac hypertrophy, impaired angiogenesis, and sometimes genetic predisposition. With the advent of microRNAs (miRNAs), new insights have been added to the perspectives for the treatment of this disease, and exercise training has been shown to be able to modulate the miRNAs associated with it. Elucidation of the relationship between exercise training and miRNAs in the pathogenesis of hypertension is fundamental in order to understand how exercise modulates the cardiovascular system at genetic level. This can be promising even for the development of new drugs. This article is a review of how exercise training acts on hypertension by means of specific miRNAs in the heart, vascular system, and skeletal muscle.
Collapse
Affiliation(s)
- Vander José das Neves
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Tiago Fernandes
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Fernanda Roberta Roque
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Ursula Paula Renó Soci
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Stéphano Freitas Soares Melo
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Edilamar Menezes de Oliveira
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| |
Collapse
|
77
|
Circulating Muscle-specific miRNAs in Duchenne Muscular Dystrophy Patients. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e177. [PMID: 25050825 PMCID: PMC4121518 DOI: 10.1038/mtna.2014.29] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023]
Abstract
Noninvasive biomarkers with diagnostic value and prognostic applications have long been desired to replace muscle biopsy for Duchenne muscular dystrophy (DMD) patients. Growing evidence indicates that circulating microRNAs are biomarkers to assess pathophysiological status. Here, we show that the serum levels of six muscle-specific miRNAs (miR-1/206/133/499/208a/208b, also known as myomiRs) were all elevated in DMD patients (P < 0.01). The receiver operating characteristic curves of circulating miR-206, miR-499, miR-208b, and miR-133 levels reflected strong separation between Becker's muscular dystrophy (BMD) and DMD patients (P < 0.05). miR-206, miR-499, and miR-208b levels were positively correlated with both age and type IIc muscle fiber content in DMD patients (2–6 years), indicating that they might represent the stage of disease as well as the process of regeneration. miR-499 and miR-208b levels were correlated with slow and fast fiber content and might reflect the ratio of slow to fast fibers in DMD patient (>6 years). Fibroblast growth factor, transforming growth factor-β, and tumor necrosis factor-α could affect the secretion of myomiRs, suggesting that circulating myomiRs might reflect the effects of cytokines and growth factors on degenerating and regenerating muscles. Collectively, our data indicated that circulating myomiRs could serve as promising biomarkers for DMD diagnosis and disease progression.
Collapse
|
78
|
McCarthy JJ. Out FoxO'd by microRNA. Focus on "miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle". Am J Physiol Cell Physiol 2014; 307:C311-3. [PMID: 24990646 DOI: 10.1152/ajpcell.00219.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- John J McCarthy
- Department of Physiology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
79
|
|