51
|
Soeur J, Eilstein J, Léreaux G, Jones C, Marrot L. Skin resistance to oxidative stress induced by resveratrol: from Nrf2 activation to GSH biosynthesis. Free Radic Biol Med 2015; 78:213-23. [PMID: 25451641 DOI: 10.1016/j.freeradbiomed.2014.10.510] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 01/04/2023]
Abstract
Skin is particularly exposed to oxidative stress, either from environmental insults such as sunlight or pollution or as a consequence of specific impairments in antioxidant status resulting from pathologies or aging. Traditionally, antioxidant products are exogenously provided to neutralize pro-oxidant species. However, another approach based on stimulation of endogenous antioxidant defense pathways is more original. Resveratrol (RSV) was reported to display such a behavior in various tissues, but data about the mechanisms of action in skin are scarce. We show here that, in primary culture of normal human keratinocytes (NHKs) or in full-thickness reconstructed human skin, RSV activated the Nrf2 pathway at nontoxic doses, from 20 µM up to 100µM. Among the Nrf2 downstream genes, glutamylcysteinyl ligase and glutathione peroxidase-2 were induced at the mRNA and protein levels. In parallel, a significant increase in glutathione content, assessed by LC/MS analysis, was observed in both models. Nrf2 gene silencing experiments performed in NHKs confirmed that Nrf2 was involved in RSV-induced modulation of cellular antioxidant status, in part by increasing cellular glutathione content. Finally, improvement of endogenous defenses induced in RSV-pretreated reconstructed skin ensured protection against the toxic oxidative effects of cumene hydroperoxide (CHP). In fact after RSV pretreatment, in response to CHP stress, glutathione content did not decrease as in unprotected samples. Cellular alterations at the dermal-epidermal junction were clearly prevented. Together, these complementary experiments demonstrated the beneficial effects of RSV on skin, beyond its direct antioxidant properties, by upregulation of a cutaneous endogenous antioxidant pathway.
Collapse
Affiliation(s)
- J Soeur
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France.
| | - J Eilstein
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| | - G Léreaux
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| | - C Jones
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| | - L Marrot
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| |
Collapse
|
52
|
Wolf IML, Fan Z, Rauh M, Seufert S, Hore N, Buchfelder M, Savaskan NE, Eyüpoglu IY. Histone deacetylases inhibition by SAHA/Vorinostat normalizes the glioma microenvironment via xCT equilibration. Sci Rep 2014; 4:6226. [PMID: 25228443 PMCID: PMC4165982 DOI: 10.1038/srep06226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas are characterized by neurodegenerative actions leading to the destruction of surrounding brain parenchyma. The disturbance in glutamate homeostasis caused by increased expression of the glutamate transporter xCT plays a key role in glioma progression. We demonstrate that the HDAC-inhibitor SAHA specifically inhibits the xCT-transporter expression. Thereby, tumor cell stress is engendered, marked by increase in ROS. Moreover, SAHA dependent xCT-reduction correlates with the inhibition of ATF4-expression, a factor known to foster xCT expression. Since xCT/system Xc- is pivotal for the brain tumor microenvironment, normalization of this system is a key in the management of malignant gliomas. To date, the problem lay in the inability to specifically target xCT due to the ubiquitous expression of the xCT-transporter—i.e. in non-cancerously transformed cells too—as well as its essential role in physiological CNS processes. Here, we show xCT-transporter equilibration through SAHA is specific for malignant brain tumors whereas SAHA does not affect the physiological xCT levels in healthy brain parenchyma. Our data indicate that SAHA operates on gliomas specifically via normalizing xCT expression which in consequence leads to reduced extracellular glutamate levels. This in turn causes a marked reduction in neuronal cell death and normalized tumor microenvironment.
Collapse
Affiliation(s)
- Ines M L Wolf
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| | - Zheng Fan
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg
| | | | - Nirjhar Hore
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU)
| | - Michael Buchfelder
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU)
| | - Nic E Savaskan
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| | - Ilker Y Eyüpoglu
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| |
Collapse
|
53
|
Sid B, Glorieux C, Valenzuela M, Rommelaere G, Najimi M, Dejeans N, Renard P, Verrax J, Calderon PB. AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells. Biochem Pharmacol 2014; 91:168-80. [PMID: 25058527 DOI: 10.1016/j.bcp.2014.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell. Since both AMPK and Nrf2 are involved in redox homeostasis, we investigated whether there was a crosstalk between the both signaling systems in hepatocarcinoma cells. Here, we demonstrated that AMPK activator AICAR, in contrary to the A769662 allosteric activator, induces Nrf2 activation and concomitantly modulates the basal redox state of the hepatocarcinoma cells. When the expression of Nrf2 is knocked down, AICAR failed to induce its effect on redox state. These data highlight a major role of Nrf2 signaling pathway in mediating the AICAR effect on basal oxidative state. Furthermore, we demonstrated that AICAR metabolization by the cell is required to induce Nrf2 activation while, the silencing of AMPK does not have any effect on Nrf2 activation. This suggests that AICAR-induced Nrf2 activation is independent of AMPK activity. In conclusion, we identified AICAR as a potent modulator of the redox state of human hepatocarcinoma cells, via the Nrf2 signaling pathway and in an AMPK-independent mechanism.
Collapse
Affiliation(s)
- Brice Sid
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Glorieux
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Manuel Valenzuela
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dejeans
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Julien Verrax
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro Buc Calderon
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.
| |
Collapse
|
54
|
Vadlakonda L, Reddy VDK, Pasupuleti M, Reddanna P. The Pasteur's Dictum: Nitrogen Promotes Growth and Oxygen Reduces the Need for Sugar. Front Oncol 2014; 4:51. [PMID: 24672772 PMCID: PMC3956120 DOI: 10.3389/fonc.2014.00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/03/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
| | - V D K Reddy
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Mukesh Pasupuleti
- SRM Research Institute, Sri Ramaswamy Memorial University , Chennai , India
| | - Pallu Reddanna
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad , Hyderabad , India ; National Institute of Animal Biotechnology , Hyderabad , India
| |
Collapse
|
55
|
Affiliation(s)
- Henry Jay Forman
- University of California at Merced, Merced, CA 95343, USA; Andrus Gerontology Center, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA.
| | - Maret Traber
- Linus Pauling Institute and; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy
| |
Collapse
|