51
|
Harandi VM, Moreira Soares Oliveira B, Allamand V, Friberg A, Fontes-Oliveira CC, Durbeej M. Antioxidants Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy. Antioxidants (Basel) 2020; 9:antiox9030244. [PMID: 32197453 PMCID: PMC7139799 DOI: 10.3390/antiox9030244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Congenital muscular dystrophy with laminin α2 chain-deficiency (LAMA2-CMD) is a severe neuromuscular disorder without a cure. Using transcriptome and proteome profiling as well as functional assays, we previously demonstrated significant metabolic impairment in skeletal muscle from LAMA2-CMD patients and mouse models. Reactive oxygen species (ROS) increase when oxygen homeostasis is not maintained and, here, we investigate whether oxidative stress indeed is involved in the pathogenesis of LAMA2-CMD. We also analyze the effects of two antioxidant molecules, N-acetyl-L-cysteine (NAC) and vitamin E, on disease progression in the dy2J/dy2J mouse model of LAMA2-CMD. We demonstrate increased ROS levels in LAMA2-CMD mouse and patient skeletal muscle. Furthermore, NAC treatment (150 mg/kg IP for 6 days/week for 3 weeks) led to muscle force loss prevention, reduced central nucleation and decreased the occurrence of apoptosis, inflammation, fibrosis and oxidative stress in LAMA2-CMD muscle. In addition, vitamin E (40 mg/kg oral gavage for 6 days/week for 2 weeks) improved morphological features and reduced inflammation and ROS levels in dy2J/dy2J skeletal muscle. We suggest that NAC and to some extent vitamin E might be potential future supportive treatments for LAMA2-CMD as they improve numerous pathological hallmarks of LAMA2-CMD.
Collapse
Affiliation(s)
- Vahid M. Harandi
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Correspondence: ; Tel.: +46-462-220-679
| | - Bernardo Moreira Soares Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Functional Genomics & Metabolism Unit, Department of Biochemistry & Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Valérie Allamand
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, UMRS974, 75013 Paris, France
| | - Ariana Friberg
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| | - Cibely C. Fontes-Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| | - Madeleine Durbeej
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| |
Collapse
|
52
|
Arc-Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano AF, Delobel P, Blanc S, Jasmin BJ, Blottner D, Salanova M, Gomez-Cabrera MC, Viña J, Brioche T, Chopard A. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol 2020; 11:71. [PMID: 32116779 PMCID: PMC7028694 DOI: 10.3389/fphys.2020.00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/22/2020] [Indexed: 01/16/2023] Open
Abstract
Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 μg of selenium, and 2.1 g of omega-3) in the prevention of muscle deconditioning induced by long-term inactivity. The study consisted of 60 days of hypoactivity using the head-down bed rest (HDBR) model. Twenty healthy men were recruited; half of them received a daily antioxidant/anti-inflammatory supplementation, whereas the other half received a placebo. Muscle biopsies were collected from the vastus lateralis muscles before and after bedrest and 10 days after remobilization. After 2 months of HDBR, all subjects presented muscle deconditioning characterized by a loss of muscle strength and an atrophy of muscle fibers, which was not prevented by cocktail supplementation. Our results regarding muscle oxidative damage, mitochondrial content, and protein balance actors refuted the potential protection of the cocktail during long-term inactivity and showed a disturbance of essential signaling pathways (protein balance and mitochondriogenesis) during the remobilization period. This study demonstrated the ineffectiveness of our cocktail supplementation and underlines the complexity of redox balance mechanisms. It raises interrogations regarding the appropriate nutritional intervention to fight against muscle deconditioning.
Collapse
Affiliation(s)
- Coralie Arc-Chagnaud
- DMEM, Université Montpellier, INRAE, Montpellier, France.,Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Guillaume Py
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Théo Fovet
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | | | - Rémi Demangel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Allan F Pagano
- Faculté des Sciences du Sport, Mitochondries, Stress Oxydant et Protection Musculaire, Université de Strasbourg, Strasbourg, France.,Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Delobel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Stéphane Blanc
- IPHC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dieter Blottner
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michele Salanova
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mari-Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Thomas Brioche
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Angèle Chopard
- DMEM, Université Montpellier, INRAE, Montpellier, France
| |
Collapse
|
53
|
Francis M, Cheng H, Ma P, Grider A. Genomic Characterization of the Zinc Transcriptional Regulatory Element Reveals Potential Functional Roles of ZNF658. Biol Trace Elem Res 2019; 192:83-90. [PMID: 30734197 PMCID: PMC6685770 DOI: 10.1007/s12011-019-1650-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
The zinc transcriptional regulatory element (ZTRE) is a newly reported binding motif for human zinc finger protein ZNF658, which alters gene expression in response to cellular zinc. The ZTRE has two nucleotide components-the palindromic flanking pairs and the bridging "N" bases between these flanks that range in number from 0 to 100. There are 12 pairs of ZTRE flanks (designated A-L). Three thousand five hundred twenty-five genes contain one or more ZTREs - 1000 to + 200 bp from their transcriptional start site (TSS). ZTRE-E is observed at a greater frequency, and ZTRE containing 25 bridging bases are less frequent, within - 200 bp from the TSS. The genes with ZTREs in this range are enriched in processes that may compensate zinc deficiency, while other genes with ZTREs outside this range are enriched in transcriptional activation processes. The division of ZTREs into two groups may imply a dual role of ZNF658, similar to the homologous yeast protein Zap1, via binding to low or high affinity sequences dependent upon cellular zinc. The KLF/Sp1-family binding motif is prevalent within the ZTRE "N" bridging bases, suggesting ZNF658 may compete with Sp1-like transactivators to suppress transcription.
Collapse
Affiliation(s)
- Michael Francis
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Huimin Cheng
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Arthur Grider
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA.
| |
Collapse
|
54
|
The abietane diterpene taxodione contributes to the antioxidant activity of rosemary by-product in muscle tissue. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
55
|
Sitzia C, Meregalli M, Belicchi M, Farini A, Arosio M, Bestetti D, Villa C, Valenti L, Brambilla P, Torrente Y. Preliminary Evidences of Safety and Efficacy of Flavonoids- and Omega 3-Based Compound for Muscular Dystrophies Treatment: A Randomized Double-Blind Placebo Controlled Pilot Clinical Trial. Front Neurol 2019; 10:755. [PMID: 31396142 PMCID: PMC6664031 DOI: 10.3389/fneur.2019.00755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Nutritional compounds can exert both anti-inflammatory and anti-oxidant effects. Since these events exacerbate the pathophysiology of muscular dystrophies, we investigated nutraceutical supplementation as an adjuvant therapy in dystrophic patients, to low costs and easy route of administration. Moreover, this treatment could represent an alternative therapeutic strategy for dystrophic patients who do not respond to corticosteroid treatment. Objective: A 24 weeks randomized double-blind placebo-controlled clinical study was aimed at evaluating the safety and efficacy of daily oral administration of flavonoids- and omega3-based natural supplement (FLAVOMEGA) in patients affected by muscular dystrophy with recognized muscle inflammation. Design: We screened 60 patients diagnosed for Duchenne (DMD), Facioscapulohumeral (FSHD), and Limb Girdle Muscular Dystrophy (LGMD). Using a computer-generated random allocation sequence, we stratified patients in a 2:1:1 ratio (DMD:FSHD:LGMD) to one of two treatment groups: continuous FLAVOMEGA, continuous placebo. Of 29 patients included, only 24 completed the study: 15 were given FLAVOMEGA, 14 placebo. Results: FLAVOMEGA was well tolerated with no reported adverse events. Significant treatment differences in the change from baseline in 6 min walk distance (6MWD; secondary efficacy endpoint) (P = 0.033) and in isokinetic knee extension (P = 0.039) (primary efficacy endpoint) were observed in LGMD and FSHD subjects. Serum CK levels (secondary efficacy endpoint) decreased in all FLAVOMEGA treated groups with significant difference in DMD subjects (P = 0.039). Conclusions: Although the small number of patients and the wide range of disease severity among patients reduced statistical significance, we obtained an optimal profile of safety and tolerability for the compound, showing valuable data of efficacy in primary and secondary endpoints. Trial registration number: NCT03317171 Retrospectively registered 25/10/2017
Collapse
Affiliation(s)
- Clementina Sitzia
- Stem Cell Laboratory, Unit of Neurology, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirella Meregalli
- Stem Cell Laboratory, Unit of Neurology, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Unit of Neurology, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Unit of Neurology, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maddalena Arosio
- Service of Physiotherapy, San Raffaele Scientific Institute, Milan, Italy
| | - Denise Bestetti
- Bianchi Bonomi Haemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Unit of Neurology, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Department of Transfusion Medicine and Hepatology, Translational Medicine, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, Desio Hospital, University Milano Bicocca, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Unit of Neurology, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
56
|
Campbell AE, Belleville AE, Resnick R, Shadle SC, Tapscott SJ. Facioscapulohumeral dystrophy: activating an early embryonic transcriptional program in human skeletal muscle. Hum Mol Genet 2019; 27:R153-R162. [PMID: 29718206 DOI: 10.1093/hmg/ddy162] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is the third most prevalent muscular dystrophy. A progressive disease, it presents clinically as weakness and wasting of the face, shoulder and upper arm muscles, with later involvement of the trunk and lower extremities. FSHD develops through complex genetic and epigenetic events that converge on a common mechanism of toxicity with mis-expression of the transcription factor double homeobox 4 (DUX4). There is currently no treatment available for FSHD. However, the consensus that ectopic DUX4 expression in skeletal muscle is the root cause of FSHD pathophysiology has allowed research efforts to turn toward cultivating a deeper understanding of DUX4 biology and the pathways that underlie FSHD muscle pathology, and to translational studies aimed at developing targeted therapeutics using ever more sophisticated cell and animal-based models of FSHD. This review summarizes recent advances in our understanding of FSHD, including the regulation and activity of DUX4 in its normal developmental roles as well as its pathological contexts. We highlight how these advances raise new questions and challenges for the field as it moves into the next decade of FSHD research.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea E Belleville
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rebecca Resnick
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
57
|
Joël P, Mouna-Messaouda K, Jean-Paul CB, Jean-Olivier D, Smail M. Electrochemical Methodology for Evaluating Skin Oxidative Stress Status (SOSS). Diseases 2019; 7:diseases7020040. [PMID: 31137870 PMCID: PMC6631060 DOI: 10.3390/diseases7020040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
For the purpose of human disease prevention, several methods have been developed, and are still developing, to assess the oxidative stress status (OSS) of individuals. In the present paper, we describe an approach based on electrochemical detection able to evaluate skin oxidative stress status (SOSS) as a PAOT (Pouvoir AntiOxydant Total)-Skin Score®. Normal reference values for the PAOT-Skin Score® were: 0-62.94 (n = 263). Intra- and inter-assay coefficients of variation were, respectively, 12.47 ± 4.29% and 7.0 ± 2.5%. Our technology showed increased skin antioxidant activity following topical application of reduced coeznyme Q10 cream or vitamin C intake as orange juice or supplements. Moreover, we found significant correlations between some blood oxidative stress biomarkers and the PAOT-Skin Score ® (-tocopherol/α-tocopherol ratio (r = 0.43, p = 0.020); copper (r = -0.42, p = 0.022); copper/zinc ratio (r = -0.49, p = 0.006), and lipid peroxides (r = -0.43, p = 0.002)). In addition to being non-invasive, the present electrochemical methodology is also not expensive, fast, and easy to use.
Collapse
Affiliation(s)
- Pincemail Joël
- University of Liège and CHU, Department of Cardiovascular Surgery/CREDEC, Antioxidant Nutrition and Health Platform, Sart Tilman, 4000 Liège, Belgium.
| | - Kaci Mouna-Messaouda
- Institut Européen des Antioxydants, Oxystress Technologies, 1 rue Victor de Lespinats, 54230 Neuves-Maisons, France.
| | - Cheramy-Bien Jean-Paul
- Institut Européen des Antioxydants, Oxystress Technologies, 1 rue Victor de Lespinats, 54230 Neuves-Maisons, France.
| | - Defraigne Jean-Olivier
- University of Liège and CHU, Department of Cardiovascular Surgery/CREDEC, Antioxidant Nutrition and Health Platform, Sart Tilman, 4000 Liège, Belgium.
| | - Meziane Smail
- Institut Européen des Antioxydants, Oxystress Technologies, 1 rue Victor de Lespinats, 54230 Neuves-Maisons, France.
| |
Collapse
|
58
|
Additional Effects of Nutritional Antioxidant Supplementation on Peripheral Muscle during Pulmonary Rehabilitation in COPD Patients: A Randomized Controlled Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5496346. [PMID: 31178967 PMCID: PMC6501222 DOI: 10.1155/2019/5496346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/24/2019] [Indexed: 11/30/2022]
Abstract
Background Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) is not fully reversed by exercise training. Antioxidants are critical for muscle homeostasis and adaptation to training. However, COPD patients experience antioxidant deficits that worsen after training and might impact their muscle response to training. Nutritional antioxidant supplementation in combination with pulmonary rehabilitation (PR) would further improve muscle function, oxidative stress, and PR outcomes in COPD patients. Methods Sixty-four COPD patients admitted to inpatient PR were randomized to receive 28 days of oral antioxidant supplementation targeting the previously observed deficits (PR antioxidant group; α-tocopherol: 30 mg/day, ascorbate: 180 mg/day, zinc gluconate: 15 mg/day, selenomethionine: 50 μg/day) or placebo (PR placebo group). PR consisted of 24 sessions of moderate-intensity exercise training. Changes in muscle endurance (primary outcome), oxidative stress, and PR outcomes were assessed. Results Eighty-one percent of the patients (FEV1 = 58.9 ± 20.0%pred) showed at least one nutritional antioxidant deficit. Training improved muscle endurance in the PR placebo group (+37.4 ± 45.1%, p < 0.001), without additional increase in the PR antioxidant group (-6.6 ± 11.3%; p = 0.56). Nevertheless, supplementation increased the α-tocopherol/γ-tocopherol ratio and selenium (+58 ± 20%, p < 0.001, and +16 ± 5%, p < 0.01, respectively), muscle strength (+11 ± 3%, p < 0.001), and serum total proteins (+7 ± 2%, p < 0.001), and it tended to increase the type I fiber proportion (+32 ± 17%, p = 0.07). The prevalence of muscle weakness decreased in the PR antioxidant group only, from 30.0 to 10.7% (p < 0.05). Conclusions While the primary outcome was not significantly improved, COPD patients demonstrate significant improvements of secondary outcomes (muscle strength and other training-refractory outcomes), suggesting a potential “add-on” effect of the nutritional antioxidant supplementation (vitamins C and E, zinc, and selenium) during PR. This trial is registered with NCT01942889.
Collapse
|
59
|
Banerji CRS, Panamarova M, Pruller J, Figeac N, Hebaishi H, Fidanis E, Saxena A, Contet J, Sacconi S, Severini S, Zammit PS. Dynamic transcriptomic analysis reveals suppression of PGC1α/ERRα drives perturbed myogenesis in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2019; 28:1244-1259. [PMID: 30462217 PMCID: PMC6452176 DOI: 10.1093/hmg/ddy405] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to epigenetic derepression of D4Z4 repeats on chromosome 4q, leading to ectopic DUX4 expression. FSHD patient myoblasts have defective myogenic differentiation, forming smaller myotubes with reduced myosin content. However, molecular mechanisms driving such disrupted myogenesis in FSHD are poorly understood. We performed high-throughput morphological analysis describing FSHD and control myogenesis, revealing altered myogenic differentiation results in hypotrophic myotubes. Employing polynomial models and an empirical Bayes approach, we established eight critical time points during which human healthy and FSHD myogenesis differ. RNA-sequencing at these eight nodal time points in triplicate, provided temporal depth for a multivariate regression analysis, allowing assessment of interaction between progression of differentiation and FSHD disease status. Importantly, the unique size and structure of our data permitted identification of many novel FSHD pathomechanisms undetectable by previous approaches. For further analysis here, we selected pathways that control mitochondria: of interest considering known alterations in mitochondrial structure and function in FSHD muscle, and sensitivity of FSHD cells to oxidative stress. Notably, we identified suppression of mitochondrial biogenesis, in particular via peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), the cofactor and activator of oestrogen-related receptor α (ERRα). PGC1α knock-down caused hypotrophic myotubes to form from control myoblasts. Known ERRα agonists and safe food supplements biochanin A, daidzein or genistein, each rescued the hypotrophic FSHD myotube phenotype. Together our work describes transcriptomic changes in high resolution that occur during myogenesis in FSHD ex vivo, identifying suppression of the PGC1α-ERRα axis leading to perturbed myogenic differentiation, which can effectively be rescued by readily available food supplements.
Collapse
Affiliation(s)
- Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
- Department of Computer Science, University College London, London, UK
- Centre of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Maryna Panamarova
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Johanna Pruller
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Nicolas Figeac
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Husam Hebaishi
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Efthymios Fidanis
- Genomics Research Platform, Biomedical Research Centre at Guy’s and St Thomas’ Trust and Kings College London, Guy’s Hospital, London, UK
| | - Alka Saxena
- Genomics Research Platform, Biomedical Research Centre at Guy’s and St Thomas’ Trust and Kings College London, Guy’s Hospital, London, UK
| | - Julian Contet
- Institute for Research on Cancer and Aging of Nice, Faculty of Medicine, Université Côte d'Azur, Nice, Cedex, France
| | - Sabrina Sacconi
- Institute for Research on Cancer and Aging of Nice, Faculty of Medicine, Université Côte d'Azur, Nice, Cedex, France
- Peripheral Nervous System, Muscle and ALS Department, Université Côte d'Azur, Nice, France
| | - Simone Severini
- Department of Computer Science, University College London, London, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| |
Collapse
|
60
|
Sasaki-Honda M, Jonouchi T, Arai M, Hotta A, Mitsuhashi S, Nishino I, Matsuda R, Sakurai H. A patient-derived iPSC model revealed oxidative stress increases facioscapulohumeral muscular dystrophy-causative DUX4. Hum Mol Genet 2018; 27:4024-4035. [PMID: 30107443 PMCID: PMC6240734 DOI: 10.1093/hmg/ddy293] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Double homeobox 4 (DUX4), the causative gene of facioscapulohumeral muscular dystrophy (FSHD), is ectopically expressed in the skeletal muscle cells of FSHD patients because of chromatin relaxation at 4q35. The diminished heterochromatic state at 4q35 is caused by either large genome contractions [FSHD type 1 (FSHD1)] or mutations in genes encoding chromatin regulators, such as SMCHD1 [FSHD type 2 (FSHD2)]. However, the mechanism by which DUX4 expression is regulated remains largely unknown. Here, using a myocyte model developed from patient-derived induced pluripotent stem cells, we determined that DUX4 expression was increased by oxidative stress (OS), a common environmental stress in skeletal muscle, in both FSHD1 and FSHD2 myocytes. We generated FSHD2-derived isogenic control clones with SMCHD1 mutation corrected by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) and homologous recombination and found in the myocytes obtained from these clones that DUX4 basal expression and the OS-induced upregulation were markedly suppressed due to an increase in the heterochromatic state at 4q35. We further found that DNA damage response (DDR) was involved in OS-induced DUX4 increase and identified ataxia-telangiectasia mutated, a DDR regulator, as a mediator of this effect. Our results suggest that the relaxed chromatin state in FSHD muscle cells permits aberrant access of OS-induced DDR signaling, thus increasing DUX4 expression. These results suggest OS could represent an environmental risk factor that promotes FSHD progression.
Collapse
Affiliation(s)
- Mitsuru Sasaki-Honda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Tatsuya Jonouchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Meni Arai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Agricultural and Environmental Engineering, Faculty of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
61
|
Mul K, Voermans NC, Lemmers RJLF, Jonker MA, van der Vliet PJ, Padberg GW, van Engelen BGM, van der Maarel SM, Horlings CGC. Phenotype-genotype relations in facioscapulohumeral muscular dystrophy type 1. Clin Genet 2018; 94:521-527. [PMID: 30211448 DOI: 10.1111/cge.13446] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023]
Abstract
To determine how much of the clinical variability in facioscapulohumeral muscular dystrophy type 1 (FSHD1) can be explained by the D4Z4 repeat array size, D4Z4 methylation and familial factors, we included 152 carriers of an FSHD1 allele (23 single cases, 129 familial cases from 37 families) and performed state-of-the-art genetic testing, extensive clinical evaluation and quantitative muscle MRI. Familial factors accounted for 50% of the variance in disease severity (FSHD clinical score). The explained variance by the D4Z4 repeat array size for disease severity was limited (approximately 10%), and varied per body region (facial muscles, upper and lower extremities approximately 30%, 15% and 3%, respectively). Unaffected gene carriers had longer repeat array sizes compared to symptomatic individuals (7.3 vs 6.0 units, P = 0.000) and slightly higher Delta1 methylation levels (D4Z4 methylation corrected for repeat size, 0.96 vs -2.46, P = 0.048). The D4Z4 repeat array size and D4Z4 methylation contribute to variability in disease severity and penetrance, but other disease modifying factors must be involved as well. The larger effect of the D4Z4 repeat array on facial muscle involvement suggests that these muscles are more sensitive to the influence of the FSHD1 locus itself, whereas leg muscle involvement seems highly dependent on modifying factors.
Collapse
Affiliation(s)
- Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marianne A Jonker
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - George W Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Corinne G C Horlings
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
62
|
Damiot A, Demangel R, Noone J, Chery I, Zahariev A, Normand S, Brioche T, Crampes F, de Glisezinski I, Lefai E, Bareille MP, Chopard A, Drai J, Collin-Chavagnac D, Heer M, Gauquelin-Koch G, Prost M, Simon P, Py G, Blanc S, Simon C, Bergouignan A, O'Gorman DJ. A nutrient cocktail prevents lipid metabolism alterations induced by 20 days of daily steps reduction and fructose overfeeding: result from a randomized study. J Appl Physiol (1985) 2018; 126:88-101. [PMID: 30284519 DOI: 10.1152/japplphysiol.00018.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Physical inactivity and sedentary behaviors are independent risk factors for numerous diseases. We examined the ability of a nutrient cocktail composed of polyphenols, omega-3 fatty acids, vitamin E, and selenium to prevent the expected metabolic alterations induced by physical inactivity and sedentary behaviors. Healthy trained men ( n = 20) (averaging ∼14,000 steps/day and engaged in sports) were randomly divided into a control group (no supplementation) and a cocktail group for a 20-day free-living intervention during which they stopped exercise and decreased their daily steps (averaging ∼3,000 steps/day). During the last 10 days, metabolic changes were further triggered by fructose overfeeding. On days 0, 10, and 20, body composition (dual energy X-ray), blood chemistry, glucose tolerance [oral glucose tolerance test (OGTT)], and substrate oxidation (indirect calorimetry) were measured. OGTT included 1% fructose labeled with (U-13C) fructose to assess liver de novo lipogenesis. Histological changes and related cellular markers were assessed from muscle biopsies collected on days 0 and 20. While the cocktail did not prevent the decrease in insulin sensitivity and its muscular correlates induced by the intervention, it fully prevented the hypertriglyceridemia, the drop in fasting HDL and total fat oxidation, and the increase in de novo lipogenesis. The cocktail further prevented the decrease in the type-IIa muscle fiber cross-sectional area and was associated with lower protein ubiquitination content. The circulating antioxidant capacity was improved by the cocktail following the OGTT. In conclusion, a cocktail of nutrient compounds from dietary origin protects against the alterations in lipid metabolism induced by physical inactivity and fructose overfeeding. NEW & NOTEWORTHY This is the first study to test the efficacy of a novel dietary nutrient cocktail on the metabolic and physiological changes occurring during 20 days of physical inactivity along with fructose overfeeding. The main findings of this study are that 1) reduction in daily steps leads to decreased insulin sensitivity and total fat oxidation, resulting in hyperlipemia and increased de novo lipogenesis and 2) a cocktail supplement prevents the alterations on lipid metabolism.
Collapse
Affiliation(s)
- Anthony Damiot
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Rémi Demangel
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - John Noone
- National Institute for Cellular Biotechnology and School of Health and Human Performance, Dublin City University , Dublin , Ireland
| | - Isabelle Chery
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Alexandre Zahariev
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Sylvie Normand
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France
| | - Thomas Brioche
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - François Crampes
- Institut national de la santé et de la recherche médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases , Toulouse , France.,Paul Sabatier University , Toulouse , France
| | - Isabelle de Glisezinski
- Institut national de la santé et de la recherche médicale, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Departments of Clinical Biochemistry and Sports Medicine , Toulouse , France
| | - Etienne Lefai
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France
| | | | - Angèle Chopard
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - Jocelyne Drai
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France.,Laboratoire de Biochimie, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Delphine Collin-Chavagnac
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France.,Laboratoire de Biochimie, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Martina Heer
- Institute of Nutritional and Food Sciences, University of Bonn , Bonn , Germany
| | | | - Michel Prost
- Laboratoire de recherches appliquées Spiral/Kirial International, Couternon, France
| | | | - Guillaume Py
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - Stéphane Blanc
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Chantal Simon
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France.,Laboratoire de Biochimie, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Audrey Bergouignan
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France.,Anschutz Health and Wellness Center, Anschutz Medical Campus, Aurora, Colorado.,Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Donal J O'Gorman
- National Institute for Cellular Biotechnology and School of Health and Human Performance, Dublin City University , Dublin , Ireland.,3U Diabetes Consortium, Dublin City University , Ireland
| |
Collapse
|
63
|
Hamel J, Tawil R. Facioscapulohumeral Muscular Dystrophy: Update on Pathogenesis and Future Treatments. Neurotherapeutics 2018; 15:863-871. [PMID: 30361930 PMCID: PMC6277282 DOI: 10.1007/s13311-018-00675-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A reliable model of a disease pathomechanism is the first step to develop targeted treatment. In facioscapulohumeral muscular dystrophy (FSHD), the third most common muscular dystrophy, recent advances in understanding the complex genetics and epigenetics have led to the identification of a disease mechanism, moving the field towards targeted therapy development. FSHD is caused by expression of DUX4, a retrogene located on the D4Z4 macrosatellite repeat array on chromosome 4q35, a gene expressed in the germline but typically repressed in somatic tissue. DUX4 derepression results from opening of the chromatin structure either by contraction of the number of repeats (FSHD1) or by chromatin hypomethylation of the D4Z4 repeats resulting from mutations in SMCHD1, a gene involved in chromatin methylation (FSHD2). The resulting expression of DUX4, a transcriptional regulator, and its target genes is toxic to skeletal muscle. Efforts for targeted treatment currently focus on disrupting DUX4 expression or blocking 1 or more of several downstream effects of DUX4. This review article focuses on the underlying FSHD genetics, current understanding of the pathomechanism, and potential treatment strategies in FSHD. In addition, recent advances in the development of new clinical outcome measures as well as biomarkers, critical for the success of future clinical trials, are reviewed.
Collapse
Affiliation(s)
- Johanna Hamel
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, NY, 14642, USA.
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, NY, 14642, USA
| |
Collapse
|
64
|
Mah JK, Chen YW. A Pediatric Review of Facioscapulohumeral Muscular Dystrophy. JOURNAL OF PEDIATRIC NEUROLOGY 2018; 16:222-231. [PMID: 30923442 PMCID: PMC6435288 DOI: 10.1055/s-0037-1604197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Facioscapulohumeral dystrophy is one of the most common forms of muscular dystrophies worldwide. It is a complex and heterogeneous disease secondary to insufficient epigenetic repression of D4Z4 repeats and aberrant expression of DUX4 in skeletal muscles. Type 1 facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of D4Z4 repeats on 4q35, whereas type 2 FSHD is associated with mutations of the SMCHD1 or DNMT3B gene in the presence of a disease-permissive 4qA haplotype. Classical FSHD is a slowly progressive disorder with gradual-onset of muscle atrophy and a descending pattern of muscle weakness. In contrast, early-onset FSHD is associated with a large deletion of D4Z4 repeats and a more severe disease phenotype, including early loss of independent ambulation as well as extramuscular manifestations, such as retinal vasculopathy, hearing loss, and central nervous system (CNS) involvement. However, the correlation between D4Z4 repeats and disease severity remains imprecise. The current standard of care guidelines offers comprehensive assessment and symptomatic management of secondary complications. Several clinical trials are currently underway for FSHD. New and emerging treatments focus on correcting the transcriptional misregulation of D4Z4 and reversing the cytotoxic effects of DUX4. Other potential therapeutic targets include reduction of inflammation, improving muscle mass, and activating compensatory molecular pathways. The utility of disease-modifying treatments will depend on selection of sensitive clinical endpoints as well as validation of muscle magnetic resonance imaging (MRI) and other biomarkers to detect meaningful changes in disease progression. Correction of the epigenetic defects using new gene editing as well as other DUX4 silencing technologies offers potential treatment options for many individuals with FSHD.
Collapse
Affiliation(s)
- Jean K. Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Health System, Washington, District of Columbia, United States
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
65
|
Xia X, Xiang X, Huang F, Zheng M, Cong R, Han L, Zhang Z. Dietary polyphenol canolol from rapeseed oil attenuates oxidative stress-induced cell damage through the modulation of the p38 signaling pathway. RSC Adv 2018; 8:24338-24345. [PMID: 35539212 PMCID: PMC9082107 DOI: 10.1039/c8ra04130j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022] Open
Abstract
Canolol (CAO) is a main phenolic compound with remarkable antioxidative properties that is generated in rapeseed oil during microwave pressing. The objective of this study was to identify the protective effect of CAO in hydrogen peroxide (H2O2)-triggered oxidative stress and reveal the role of the p38 MAPK pathway during the protective process. CAO treatment showed an observable cytoprotective effect. Results showed that CAO significantly improved H2O2-stimulated cell death, and diminished ROS production and malondialdehyde (MDA) level. Moreover, CAO increased glutathione (GSH) content and promoted the activities of superoxide dismutase (SOD) and catalase (CAT). As a result, apoptosis was ameliorated and depletion of the mitochondrial membrane potential was restored. Western blotting analysis demonstrated CAO downregulated the expression of caspase-3 and decreased the ratio of Bax/Bcl-2. Notably, the phosphorylation of p38 MAPK was inhibited by CAO in H2O2-induced apoptosis, which was confirmed by its inhibitor (SB203580). Taken together, our study demonstrated the pivotal role of the p38 MAPK pathway in the cytoprotective effect of CAO on oxidative stress-induced cell damage, suggesting CAO is a promising antioxidant in food and health-related fields.
Collapse
Affiliation(s)
- Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Hubei, Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China +86-27-86711526
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Hubei, Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China +86-27-86711526
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Hubei, Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China +86-27-86711526
| | - Mingming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Hubei, Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China +86-27-86711526
| | | | - Ling Han
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Hubei, Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China +86-27-86711526
| | - Zhen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Hubei, Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China +86-27-86711526
| |
Collapse
|
66
|
Integrating clinical and genetic observations in facioscapulohumeral muscular dystrophy. Curr Opin Neurol 2018; 29:606-13. [PMID: 27389814 DOI: 10.1097/wco.0000000000000360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW This review gives an overview of the currently known key clinical and (epi)genetic aspects of facioscapulohumeral muscular dystrophy (FSHD) and provides perspectives to facilitate future research. RECENT FINDINGS Clinically, imaging studies have contributed to a detailed characterization of the FSHD phenotype, and a model is proposed with five stages of disease progression. A number of clinical trials have been conducted regarding exercise and diet aiming to reduce symptoms. Genetically, at least two different mechanisms (FSHD1 and FSHD2) lead to double homeobox 4 (DUX4) expression in skeletal myocytes, which is expected to be necessary for the disease. Disease severity is most likely determined by a combination of the D4Z4 repeat size and its epigenetic state. SUMMARY FSHD is one of the most common muscular dystrophies and is characterized by a typical distribution of muscle weakness. Progress has been made on clinical as well as on (epi)genetic aspects of the disease. Currently, there is no cure available for FSHD. For successful development of new treatments targeting the disease process, integration of clinical and pathogenetic knowledge is essential. A clinical trial toolbox that consists of patient registries, biomarkers and clinical outcome measures will be required to effectively conduct future clinical trials.
Collapse
|
67
|
|
68
|
Vinel C, Pereira O, Dupuy A, Bertrand-Michel J, Laoudj-Chenivesse D, Rolland Y, Rivière D, Valet P, Dray C, Pillard F. Isoprostanes as markers for muscle aging in older athletes. BIOCHIMIE OPEN 2017; 6:1-8. [PMID: 29893381 PMCID: PMC5991887 DOI: 10.1016/j.biopen.2017.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023]
Abstract
Introduction Production of isoprostanes (IsoPs) is enhanced after acute, intense, and prolonged exercise, in untrained subjects. This effect is greater in older subjects. The present study aims to delineate the profile of acute-exercise-induced IsoPs levels in young and older endurance-trained subjects. Methods All included subjects were male, young (n = 6; 29 yrs ± 5.7) or older (n = 6; 63.7 yrs ± 2.3), and competitors. The kinetics of F2-IsoPs in blood-sera was assessed at rest, for the maximal aerobic exercise power (MAP) corresponding to the cardio-respiratory fitness index and after a 30-min recovery period. Results No significant time effect on F2-IsoPs kinetics was identified in young subjects. However, in older athletes, F2-IsoPs blood-concentrations at the MAP were higher than at rest, whereas these blood-concentrations did not differ between rest and after the 30-min recovery period. Conclusion Because plasma glutathione (GSH) promotes the formation of some F2-IsoPs, we suggest that the surprising decrease in F2-IsoPs levels in older subjects would be caused by decreased GSH under major ROS production in older subjects. We argue that the assessment F2-IsoPs in plasma as biomarkers of the aging process should be challenged by exercise to improve the assessment of the functional response against reactive oxygen species in older subjects. Acute exercise promotes an increase in F2-IsoPs plasma level in older athletes. The F2-IsoPs plasma level significantly decreased after recovery in older athletes. This kinetic of F2-IsoPs could reflect a decrease of glutathione (GSH). Oxidative stress status determination should be challenged by exercise. Assessment of F2-IsoPs plasma level should be paired to GSH assessment.
Collapse
Key Words
- V˙O2max, Maximal oxygen uptake
- Aging
- BHT, Butylated hydroxytoluene
- Exercise
- FSHD, Facioscapulohumeral dystrophy
- GSH, Glutathione
- HPLC, High-performance liquid chromatography
- IsoP, Isoprostane
- Isoprostanes
- La30, Venous blood-lactate concentration at 30 min after exercise
- Lamax, Venous blood-lactate concentration at V˙O2max
- MAP, Maximal aerobic power
- MS, Mass spectrometry
- Nrf2, Erythroid 2-like factor 2
- ROS, reactive-oxygen species
- Training
Collapse
Affiliation(s)
- Claire Vinel
- Institute of Metabolic and Cardiovascular Diseases, Joint Research Unit 1048 INSERM Adipolab Unit - Paul Sabatier University, Toulouse, France
| | - Ophélie Pereira
- Exercise Physiology Department, Medical School, Paul Sabatier University, Toulouse, France
| | - Aude Dupuy
- MetaToul Lipidomic Core Facility, MetaboHUB, Joint Research Unit 1048 INSERM - Paul Sabatier University, Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul Lipidomic Core Facility, MetaboHUB, Joint Research Unit 1048 INSERM - Paul Sabatier University, Toulouse, France
| | - Dalila Laoudj-Chenivesse
- Experimental Heart and Muscle Physiology and Medicine, Joint Research Unit 1046 INSERM - University of Montpellier 1 and 2, Montpellier, France
| | - Yves Rolland
- Gérontopôle of Toulouse, Institute of Aging, University Hospital, Toulouse, France.,Epidemiology and Chronic Disease, Joint Research Unit 1027 INSERM - Paul Sabatier University, Toulouse, France
| | - Daniel Rivière
- Institute of Metabolic and Cardiovascular Diseases, Joint Research Unit 1048 INSERM Adipolab Unit - Paul Sabatier University, Toulouse, France.,Exercise Physiology Department, Medical School, Paul Sabatier University, Toulouse, France.,Sport Medicine Department, Larrey University Hospital, Toulouse, France
| | - Philippe Valet
- Institute of Metabolic and Cardiovascular Diseases, Joint Research Unit 1048 INSERM Adipolab Unit - Paul Sabatier University, Toulouse, France
| | - Cédric Dray
- Institute of Metabolic and Cardiovascular Diseases, Joint Research Unit 1048 INSERM Adipolab Unit - Paul Sabatier University, Toulouse, France
| | - Fabien Pillard
- Institute of Metabolic and Cardiovascular Diseases, Joint Research Unit 1048 INSERM Adipolab Unit - Paul Sabatier University, Toulouse, France.,Exercise Physiology Department, Medical School, Paul Sabatier University, Toulouse, France.,Sport Medicine Department, Larrey University Hospital, Toulouse, France
| |
Collapse
|
69
|
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst Rev 2017; 12:CD009789. [PMID: 29238948 PMCID: PMC6486214 DOI: 10.1002/14651858.cd009789.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise. OBJECTIVES To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise. SEARCH METHODS We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement. DATA COLLECTION AND ANALYSIS Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE. MAIN RESULTS Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress. AUTHORS' CONCLUSIONS There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.
Collapse
Affiliation(s)
- Mayur K Ranchordas
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - David Rogerson
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - Hora Soltani
- Sheffield Hallam UniversityCentre for Health and Social Care Research32 Collegiate CrescentSheffieldUKS10 2BP
| | - Joseph T Costello
- University of PortsmouthDepartment of Sport and Exercise ScienceSpinnaker BuildingCambridge RoadPortsmouthUKP01 2ER
| | | |
Collapse
|
70
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
71
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Valduga AH, Rupcic IF, Minatel E. Vitamin E treatment decreases muscle injury in mdx mice. Nutrition 2017; 43-44:39-46. [DOI: 10.1016/j.nut.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
72
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
73
|
Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R. Redox Control of Skeletal Muscle Regeneration. Antioxid Redox Signal 2017; 27:276-310. [PMID: 28027662 PMCID: PMC5685069 DOI: 10.1089/ars.2016.6782] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, Université Claude Bernard Lyon 1, Univ Lyon, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Carole Groussard
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| |
Collapse
|
74
|
Denny AP, Heather AK. Are Antioxidants a Potential Therapy for FSHD? A Review of the Literature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7020295. [PMID: 28690764 PMCID: PMC5485364 DOI: 10.1155/2017/7020295] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy affecting approximately 1 in 7500 individuals worldwide. It is a progressive disease characterised by skeletal muscle weakness and wasting. A genetic mutation on the 4q35 chromosome results in the expression of the double homeobox 4 gene (DUX4) which drives oxidative stress, inflammation, toxicity, and atrophy within the skeletal muscle. FSHD is characterised by oxidative stress, and there is currently no cure and a lack of therapies for the disease. Antioxidants have been researched for many years, with investigators aiming to use antioxidants therapeutically for oxidative stress-associated diseases. This has included both natural and synthetic antioxidants. The use of antioxidants in preclinical or clinical models has been largely successful with a plethora of research reporting positive results. However, when translated to clinical trials, the use of antioxidants as a therapeutic intervention for a variety of disease has been largely unsuccessful. Moreover, specifically focusing on FSHD, limited research has been conducted on the use of antioxidants as a therapy in either preclinical or clinical models. This review summarises the current state of antioxidant use in the treatment of FSHD and discusses their potential avenue for therapeutic use for FSHD patients.
Collapse
Affiliation(s)
- Adam Philip Denny
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alison Kay Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
75
|
Ansseau E, Vanderplanck C, Wauters A, Harper SQ, Coppée F, Belayew A. Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD). Genes (Basel) 2017; 8:genes8030093. [PMID: 28273791 PMCID: PMC5368697 DOI: 10.3390/genes8030093] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/02/2023] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent hereditary myopathies and is generally characterized by progressive muscle atrophy affecting the face, scapular fixators; upper arms and distal lower legs. The FSHD locus maps to a macrosatellite D4Z4 repeat array on chromosome 4q35. Each D4Z4 unit contains a DUX4 gene; the most distal of which is flanked by a polyadenylation site on FSHD-permissive alleles, which allows for production of stable DUX4 mRNAs. In addition, an open chromatin structure is required for DUX4 gene transcription. FSHD thus results from a gain of function of the toxic DUX4 protein that normally is only expressed in germ line and stem cells. Therapeutic strategies are emerging that aim to decrease DUX4 expression or toxicity in FSHD muscle cells. We review here the heterogeneity of DUX4 mRNAs observed in muscle and stem cells; and the use of antisense oligonucleotides (AOs) targeting the DUX4 mRNA to interfere either with transcript cleavage/polyadenylation or intron splicing. We show in primary cultures that DUX4-targeted AOs suppress the atrophic FSHD myotube phenotype; but do not improve the disorganized FSHD myotube phenotype which could be caused by DUX4c over-expression. Thus; DUX4c might constitute another therapeutic target in FSHD.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Scott Q Harper
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| |
Collapse
|
76
|
Bodnár D, Ruzsnavszky O, Oláh T, Dienes B, Balatoni I, Ungvári É, Benkő I, Babka B, Prokisch J, Csernoch L, Szentesi P. Dietary selenium augments sarcoplasmic calcium release and mechanical performance in mice. Nutr Metab (Lond) 2016; 13:76. [PMID: 27822290 PMCID: PMC5094064 DOI: 10.1186/s12986-016-0134-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background As an essential trace element selenium plays a significant role in many physiological functions of the organs. It is found within muscles as selenocystein in selenoprotein N, which is involved in redox-modulated calcium homeostasis and in protection against oxidative stress. Methods The effects of two different selenium compounds (selenate and NanoSe in 0.5 and 5 ppm concentration for two weeks) on muscle properties of mice were examined by measuring in vivo muscle performance, in vitro force in soleus (SOL) and extensor digitorum longus (EDL) muscles and changes in intracellular Ca2+ concentration in single fibers from flexor digitorum brevis (FDB) muscle.. Western-blot analysis on muscle lysates of EDL and SOL were used to measure the selenoprotein N expression. Control mice received 0.3 ppm Se. Results While the grip force did not change, 5 ppm selenium diets significantly increased the speed of voluntary running and the daily distance covered. Both forms of selenium increased significantly the amplitude of single twitches in EDL and SOL muscle in a concentration dependent manner. Selenate increased fatigue resistance in SOL. The amplitude of the calcium transients evoked by KCl depolarization increased significantly from the control of 343 ± 44 nM to 671 ± 51 nM in the presence of 0.5 ppm selenate in FDB fibers. In parallel, the rate of calcium release during short depolarizations increased significantly from 28.4 ± 2.2 to 45.5 ± 3.8 and 52.1 ± 1.9 μM/ms in the presence of 0.5 ppm NanoSe and selenate, respectively. In 0.5 ppm concentration both selenium compounds increased significantly the selenoprotein N expression only in EDL muscle. Conclusions Selenium supplementation augments calcium release from the sarcoplasmic reticulum thus improves skeletal muscle performance. These effects are accompanied by the increased selenoprotein N expression in the muscles which could result in increased oxidative stress tolerance in case of long lasting contraction. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0134-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dóra Bodnár
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Olga Ruzsnavszky
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Ildikó Balatoni
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Éva Ungvári
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilona Benkő
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Babka
- Institute of Animal Science, Biotechnology and Nature, Faculty of the Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature, Faculty of the Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| |
Collapse
|
77
|
Goselink RJM, Schreuder THA, Mul K, Voermans NC, Pelsma M, de Groot IJM, van Alfen N, Franck B, Theelen T, Lemmers RJ, Mah JK, van der Maarel SM, van Engelen BG, Erasmus CE. Facioscapulohumeral dystrophy in children: design of a prospective, observational study on natural history, predictors and clinical impact (iFocus FSHD). BMC Neurol 2016; 16:138. [PMID: 27530735 PMCID: PMC4988042 DOI: 10.1186/s12883-016-0664-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD; OMIM 158900 & 158901) is a progressive skeletal muscle dystrophy, characterized by an autosomal dominant inheritance pattern. One of the major unsolved questions in FSHD is the marked clinical heterogeneity, ranging from asymptomatic individuals to severely affected patients with an early onset. An estimated 10 % of FSHD patients have an early onset (onset before 10 years of age) and are traditionally classified as infantile FSHD. This subgroup is regarded as severely affected and extra-muscular symptoms, such as hearing loss and retinopathy, are frequently described. However, information on the prevalence, natural history and clinical management of early onset FSHD is currently lacking, thereby hampering adequate patient counselling and management. Therefore, a population-based prospective cohort study on FSHD in children is highly needed. Methods/design This explorative study aims to recruit all children (aged 0–17 years) with a genetically confirmed diagnosis of FSHD in The Netherlands. The children will be assessed at baseline and at 2-year follow-up. The general aim of the study is the description of the clinical features and genetic characteristics of this paediatric cohort. The primary outcome is the motor function as measured by the Motor Function Measure. Secondary outcomes include quantitative and qualitative description of the clinical phenotype, muscle imaging, genotyping and prevalence estimations. The ultimate objective will be a thorough description of the natural history, predictors of disease severity and quality of life in children with FSHD. Discussion The results of this population-based study are vital for adequate patient management and clinical trial-readiness. Furthermore, this study is expected to provide additional insight in the epigenetic and environmental disease modifying factors. In addition to improve counselling, this could contribute to unravelling the aetiology of FSHD. Trial registration clinicaltrials.gov NCT02625662.
Collapse
Affiliation(s)
- Rianne J M Goselink
- Department of Neurology, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tim H A Schreuder
- Department of Neurology, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maaike Pelsma
- Department of Rehabilitation, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imelda J M de Groot
- Department of Rehabilitation, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas Franck
- Department of Clinical audiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Theelen
- Department of Op Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean K Mah
- Department of Paediatric Neurology, Alberta Children's Hospital, Calgary, Canada
| | | | - Baziel G van Engelen
- Department of Neurology, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Neurology, Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
78
|
Finsterer J, Zarrouk-Mahjoub S. Treatment of muscle weakness in neuromuscular disorders. Expert Rev Neurother 2016; 16:1383-1395. [PMID: 27376189 DOI: 10.1080/14737175.2016.1206471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Weakness is one of the predominant clinical manifestations of neuromuscular disorders (NMDs), which strongly influences daily life, prognosis, and outcome of affected patients. One of the major therapeutic goals in NMD-patients is to completely resolve muscle weakness. Various treatment options are available and include physical therapy, electrotherapy, diet, drugs, avoidance or withdrawal of muscle-toxic and weakness-inducing agents, detoxification, stem-cell-therapy, plasma-exchange, respiratory therapy, or surgery. Most accessible to treatment is weakness from immune-mediated neuropathies, immune-mediated transmission-disorders, and idiopathic immune myopathies. Areas covered: This manuscript aims to summarize and discuss recent findings and future perspectives concerning the treatment of muscle weakness in NMDs. Data were obtained by a literature search in databases such as PubMed and Current-Contents. Expert commentary: Weakness is most easily treatable in acquired NMDs and in hereditary myopathies and neuropathies beneficial treatment options are also available. Research needs to be encouraged and intensified to further expand the spectrum of treatment options for weakness.
Collapse
|
79
|
Tawil R, Mah JK, Baker S, Wagner KR, Ryan MM, Baker S, Corbett A, van Engelen B, McNamara S, Mah JK, Ryan MM, Rasko J, Raykar V, Sacconi S, Tapscott SJ, Tawil R, Wagner KR, Watts A. Clinical practice considerations in facioscapulohumeral muscular dystrophy Sydney, Australia, 21 September 2015. Neuromuscul Disord 2016; 26:462-71. [DOI: 10.1016/j.nmd.2016.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
|
80
|
|
81
|
Tawil R, Padberg GW, Shaw DW, van der Maarel SM, Tapscott SJ. Clinical trial preparedness in facioscapulohumeral muscular dystrophy: Clinical, tissue, and imaging outcome measures 29-30 May 2015, Rochester, New York. Neuromuscul Disord 2015; 26:181-6. [PMID: 26627872 DOI: 10.1016/j.nmd.2015.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.
| | - George W Padberg
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis W Shaw
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | | | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
82
|
Heterogeneity of Systemic Oxidative Stress Profiles in COPD: A Potential Role of Gender. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:201843. [PMID: 26167238 PMCID: PMC4488160 DOI: 10.1155/2015/201843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Oxidative stress (OS) plays a key role in the muscle impairment and exercise capacity of COPD patients. However, the literature reveals that systemic OS markers show great heterogeneity, which may hinder the prescription of effective antioxidant supplementation. This study therefore aimed to identify OS markers imbalance of COPD patients, relative to validated normal reference values, and to investigate the possibility of systemic OS profiles. We measured systemic enzymatic/nonenzymatic antioxidant and lipid peroxidation (LP) levels in 54 stable COPD patients referred for a rehabilitation program. The main systemic antioxidant deficits in these patients concerned vitamins and trace elements. Fully 89% of the COPD patients showed a systemic antioxidant imbalance which may have caused the elevated systemic LP levels in 69% of them. Interestingly, two patient profiles (clusters 3 and 4) had a more elevated increase in LP combined with increased copper and/or decreased vitamin C, GSH, and GPx. Further analysis revealed that the systemic LP level was higher in COPD women and associated with exercise capacity.
Our present data therefore support future supplementations with antioxidant vitamins and trace elements to improve exercise capacity, but COPD patients will probably show different positive responses.
Collapse
|