51
|
Tutaj H, Pogoda E, Tomala K, Korona R. Gene overexpression screen for chromosome instability in yeast primarily identifies cell cycle progression genes. Curr Genet 2018; 65:483-492. [PMID: 30244280 PMCID: PMC6420891 DOI: 10.1007/s00294-018-0885-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Loss of heterozygosity (LOH) in a vegetatively growing diploid cell signals irregularity of mitosis. Therefore, assays of LOH serve to discover pathways critical for proper replication and segregation of chromosomes. We screened for enhanced LOH in a whole-genome collection of diploid yeast strains in which a single gene was strongly overexpressed. We found 39 overexpression strains with substantially increased LOH caused either by recombination or by chromosome instability. Most of them, 32 in total, belonged to the category of "cell division", a broadly defined biological process. Of those, only one, TOP3, coded for an enzyme that uses DNA as a substrate. The rest related to establishment and maintenance of cell polarity, chromosome segregation, and cell cycle checkpoints. Former studies, in which gene deletions were used, showed that an absence of a protein participating in the DNA processing machinery is a potent stimulator of genome instability. As our results suggest, overexpression of such proteins is not comparably damaging as the absence of them. It may mean that the harmful effect of overexpression is more likely to occur in more complex and multistage processes, such as chromosome segregation. We also report a side finding, resulting from the fact that we worked with the yeast strains bearing a 2-micron plasmid. We noted that intense transcription from such a plasmid led to an enhanced rate of an entire chromosome loss (as opposed to LOH produced by recombination). This observation may support models linking segregation of 2-micron plasmids to segregation of chromosomes.
Collapse
Affiliation(s)
- Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Elzbieta Pogoda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
52
|
Molon M, Panek A, Molestak E, Skoneczny M, Tchorzewski M, Wnuk M. Daughters of the budding yeast from old mothers have shorter replicative lifespans but not total lifespans. Are DNA damage and rDNA instability the factors that determine longevity? Cell Cycle 2018; 17:1173-1187. [PMID: 29895191 DOI: 10.1080/15384101.2018.1464846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although a lot of effort has been put into the search for factors responsible for aging in yeast mother cells, our knowledge of cellular changes in daughter cells originating from old mothers is still very limited. It has been shown that an old mother is not able to compensate for all negative changes within its cell and therefore transfers them to the bud. In this paper, we show for the first time that daughter cells of an old mother have a reset lifespan expressed in units of time despite drastic reduction of their budding lifespan, which suggests that a single yeast cell has a fixed programmed longevity regardless of the time point at which it was originated. Moreover, in our study we found that longevity parameters are not correlated with the rDNA level, DNA damage, chromosome structure or aging parameters (budding lifespan and total lifespan).
Collapse
Affiliation(s)
- Mateusz Molon
- a Department of Biochemistry and Cell Biology , University of Rzeszow , Rzeszow , Poland
| | - Anita Panek
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| | - Eliza Molestak
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Marek Skoneczny
- d Department of Genetics , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Marek Tchorzewski
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Maciej Wnuk
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| |
Collapse
|
53
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
54
|
Abstract
Mitochondrial DNA (mtDNA), which is essential for mitochondrial and cell function, is replicated and transcribed in the organelle by proteins that are entirely coded in the nucleus. Replication of mtDNA is challenged not only by threats related to the replication machinery and orchestration of DNA synthesis, but also by factors linked to the peculiarity of this genome. Indeed the architecture, organization, copy number, and location of mtDNA, which are markedly distinct from the nuclear genome, require ad hoc and complex regulation to ensure coordinated replication. As a consequence sub-optimal mtDNA replication, which results from compromised regulation of these factors, is generally associated with mitochondrial dysfunction and disease. Mitochondrial DNA replication should be considered in the context of the organelle and the whole cell, and not just a single genome or a single replication event. Major threats to mtDNA replication are linked to its dependence on both mitochondrial and nuclear factors, which require exquisite coordination of these crucial subcellular compartments. Moreover, regulation of replication events deals with a dynamic population of multiple mtDNA molecules rather than with a fixed number of genome copies, as it is the case for nuclear DNA. Importantly, the mechanistic aspects of mtDNA replication are still debated. We describe here major challenges for human mtDNA replication, the mechanistic aspects of the process that are to a large extent original, and their consequences on disease.
Collapse
Affiliation(s)
- Miria Ricchetti
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Stem Cells and Development, 75724 Cedex15, Paris, France; Team Stability of Nuclear and Mitochondrial DNA, CNRS UMR 3738, 75724, Cedex15, Paris, France.
| |
Collapse
|
55
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
56
|
Prasai K, Robinson LC, Scott RS, Tatchell K, Harrison L. Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:7760-7773. [PMID: 28549155 PMCID: PMC5569933 DOI: 10.1093/nar/gkx443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/04/2017] [Indexed: 01/30/2023] Open
Abstract
The mechanism of mitochondrial DNA (mtDNA) replication in Saccharomyces cerevisiae is controversial. Evidence exists for double-strand break (DSB) mediated recombination-dependent replication at mitochondrial replication origin ori5 in hypersuppressive ρ− cells. However, it is not clear if this replication mode operates in ρ+ cells. To understand this, we targeted bacterial Ku (bKu), a DSB binding protein, to the mitochondria of ρ+ cells with the hypothesis that bKu would bind persistently to mtDNA DSBs, thereby preventing mtDNA replication or repair. Here, we show that mitochondrial-targeted bKu binds to ori5 and that inducible expression of bKu triggers petite formation preferentially in daughter cells. bKu expression also induces mtDNA depletion that eventually results in the formation of ρ0 cells. This data supports the idea that yeast mtDNA replication is initiated by a DSB and bKu inhibits mtDNA replication by binding to a DSB at ori5, preventing mtDNA segregation to daughter cells. Interestingly, we find that mitochondrial-targeted bKu does not decrease mtDNA content in human MCF7 cells. This finding is in agreement with the fact that human mtDNA replication, typically, is not initiated by a DSB. Therefore, this study provides evidence that DSB-mediated replication is the predominant form of mtDNA replication in ρ+ yeast cells.
Collapse
Affiliation(s)
- Kanchanjunga Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
57
|
Lee SR, Han J. Mitochondrial Mutations in Cardiac Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:81-111. [PMID: 28551783 DOI: 10.1007/978-3-319-55330-6_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
58
|
Cohen N, Breker M, Bakunts A, Pesek K, Chas A, Argemí J, Orsi A, Gal L, Chuartzman S, Wigelman Y, Jonas F, Walter P, Ernst R, Aragón T, van Anken E, Schuldiner M. Iron affects Ire1 clustering propensity and the amplitude of endoplasmic reticulum stress signaling. J Cell Sci 2017; 130:3222-3233. [PMID: 28794014 PMCID: PMC5665437 DOI: 10.1242/jcs.201715] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/02/2017] [Indexed: 01/10/2023] Open
Abstract
The unfolded protein response (UPR) allows cells to adjust secretory pathway capacity according to need. Ire1, the endoplasmic reticulum (ER) stress sensor and central activator of the UPR is conserved from the budding yeast Saccharomyces cerevisiae to humans. Under ER stress conditions, Ire1 clusters into foci that enable optimal UPR activation. To discover factors that affect Ire1 clustering, we performed a high-content screen using a whole-genome yeast mutant library expressing Ire1–mCherry. We imaged the strains following UPR induction and found 154 strains that displayed alterations in Ire1 clustering. The hits were enriched for iron and heme effectors and binding proteins. By performing pharmacological depletion and repletion, we confirmed that iron (Fe3+) affects UPR activation in both yeast and human cells. We suggest that Ire1 clustering propensity depends on membrane composition, which is governed by heme-dependent biosynthesis of sterols. Our findings highlight the diverse cellular functions that feed into the UPR and emphasize the cross-talk between organelles required to concertedly maintain homeostasis. Highlighted Article: To respond to folding stress in the ER, cells activate the conserved sensor Ire1. We show that iron is required for optimal Ire1 activation and suggest this is because iron is required for ergosterol biosynthesis.
Collapse
Affiliation(s)
- Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,The Rockefeller University, New York, NY 10065, USA
| | - Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Ospedale San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Kristina Pesek
- Institute of Biochemistry and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, 60438 Frankfurt, Germany
| | - Ainara Chas
- Center for Applied Medical Research, Department of Gene Therapy and Regulation of Gene Expression. University of Navarra, 55 Pio XII St. 31008 Pamplona, Spain
| | - Josepmaria Argemí
- Center for Applied Medical Research, Department of Gene Therapy and Regulation of Gene Expression. University of Navarra, 55 Pio XII St. 31008 Pamplona, Spain
| | - Andrea Orsi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Ospedale San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Silvia Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoav Wigelman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter Walter
- Department of Biochemistry & Biophysics, University of California San Francisco and Howard Hughes Medical Institute, San Francisco, CA 94143, USA
| | - Robert Ernst
- Center for Molecular Signaling, Institute of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Tomás Aragón
- Center for Applied Medical Research, Department of Gene Therapy and Regulation of Gene Expression. University of Navarra, 55 Pio XII St. 31008 Pamplona, Spain
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Ospedale San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
59
|
Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8060949. [PMID: 28680532 PMCID: PMC5478868 DOI: 10.1155/2017/8060949] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology.
Collapse
|
60
|
Feng X, Xu J, Liang Y, Chen GL, Fan XW, Li YZ. A proteomic-based investigation of potential copper-responsive biomarkers: Proteins, conceptual networks, and metabolic pathways featuring Penicillium janthinellum from a heavy metal-polluted ecological niche. Microbiologyopen 2017; 6. [PMID: 28488414 PMCID: PMC5552966 DOI: 10.1002/mbo3.485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi‐copper (Cu) interactions are very important in the formation of natural ecosystems and the bioremediation of heavy metal pollution. However, important issues at the proteome level remain unclear. We compared six proteomes from Cu‐resistant wild‐type (WT) Penicillium janthinellum strain GXCR and a Cu‐sensitive mutant (EC‐6) under 0, 0.5, and 3 mmol/L Cu treatments using iTRAQ. A total of 495 known proteins were identified, and the following conclusions were drawn from the results: Cu tolerance depends on ATP generation and supply, which is relevant to glycolysis pathway activity; oxidative phosphorylation, the TCA cycle, gluconeogenesis, fatty acid synthesis, and metabolism are also affected by Cu; high Cu sensitivity is primarily due to an ATP energy deficit; among ATP generation pathways, Cu‐sensitive and Cu‐insensitive metabolic steps exist; gluconeogenesis pathway is crucial to the survival of fungi in Cu‐containing and sugar‐scarce environments; fungi change their proteomes via two routes (from ATP, ATP‐dependent RNA helicases (ADRHs), and ribosome biogenesis to proteasomes and from ATP, ADRHs to spliceosomes and/or stress‐adapted RNA degradosomes) to cope with changes in Cu concentrations; and unique routes exist through which fungi respond to high environmental Cu. Further, a general diagram of Cu‐responsive paths and a model theory of high Cu are proposed at the proteome level. Our work not only provides the potential protein biomarkers that indicate Cu pollution and targets metabolic steps for engineering Cu‐tolerant fungi during bioremediation but also presents clues for further insight into the heavy metal tolerance mechanisms of other eukaryotes.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Guo-Li Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
61
|
Cao X, Qin Y. Mitochondrial translation factors reflect coordination between organelles and cytoplasmic translation via mTOR signaling: Implication in disease. Free Radic Biol Med 2016; 100:231-237. [PMID: 27101739 DOI: 10.1016/j.freeradbiomed.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
Mitochondria are semi-autonomous organelle possessing their own translation machinery to biosynthesize mitochondrial DNA (mtDNA)-encoded polypeptides, which are the core subunits of oxidative phosphorylation (OXPHOS) complexes. Mitochondrial translation elongation factor 4 (mtEF4) is a key quality control factor in mitochondrial translation (mt-translation) that regulates mitochondrial tRNA translocation and modulates cellular responses by influencing cytoplasmic translation (ct-translation). In addition to mtEF4, mt-translational activators, mitochondrial microRNAs (mitomiRs), and MITRAC have been reported recently as crucial mt-translation regulators. Here, we focus on the novel ways how these factors regulate mt-translation, discuss the main cellular response of mammalian target of rapamycin (mTOR) signalling upon mt-translation defects, and summarize the related human diseases.
Collapse
Affiliation(s)
- Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
62
|
Delerue T, Khosrobakhsh F, Daloyau M, Emorine LJ, Dedieu A, Herbert CJ, Bonnefoy N, Arnauné-Pelloquin L, Belenguer P. Loss of Msp1p in Schizosaccharomyces pombe induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes. FEBS Lett 2016; 590:3544-3558. [PMID: 27664110 DOI: 10.1002/1873-3468.12432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA.
Collapse
Affiliation(s)
- Thomas Delerue
- Center of Developmental Biology (CBD) and Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Farnoosh Khosrobakhsh
- Center of Developmental Biology (CBD) and Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France.,Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Marlène Daloyau
- Center of Developmental Biology (CBD) and Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Laurent Jean Emorine
- Center of Developmental Biology (CBD) and Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Adrien Dedieu
- Center of Developmental Biology (CBD) and Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Laetitia Arnauné-Pelloquin
- Center of Developmental Biology (CBD) and Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Pascale Belenguer
- Center of Developmental Biology (CBD) and Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France.
| |
Collapse
|
63
|
Abstract
Apart from energy transformation, mitochondria play important signaling roles. In
yeast, mitochondrial signaling relies on several molecular cascades. However, it
is not clear how a cell detects a particular mitochondrial malfunction. The
problem is that there are many possible manifestations of mitochondrial
dysfunction. For example, exposure to the specific antibiotics can either
decrease (inhibitors of respiratory chain) or increase (inhibitors of
ATP-synthase) mitochondrial transmembrane potential. Moreover, even in the
absence of the dysfunctions, a cell needs feedback from mitochondria to
coordinate mitochondrial biogenesis and/or removal by mitophagy during the
division cycle. To cope with the complexity, only a limited set of compounds is
monitored by yeast cells to estimate mitochondrial functionality. The known
examples of such compounds are ATP, reactive oxygen species, intermediates of
amino acids synthesis, short peptides, Fe-S clusters and heme, and also the
precursor proteins which fail to be imported by mitochondria. On one hand, the
levels of these molecules depend not only on mitochondria. On the other hand,
these substances are recognized by the cytosolic sensors which transmit the
signals to the nucleus leading to general, as opposed to mitochondria-specific,
transcriptional response. Therefore, we argue that both ways of
mitochondria-to-nucleus communication in yeast are mostly (if not completely)
unspecific, are mediated by the cytosolic signaling machinery and strongly
depend on cellular metabolic state.
Collapse
Affiliation(s)
- Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Anna N Zyrina
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia. ; Institute of Mitoengineering, Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
64
|
Wang H, Dharmalingam P, Vasquez V, Mitra J, Boldogh I, Rao KS, Kent TA, Mitra S, Hegde ML. Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target? Mech Ageing Dev 2016; 161:163-176. [PMID: 27663141 DOI: 10.1016/j.mad.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated aging and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
65
|
Kingsbury JM, Shamaprasad N, Billmyre RB, Heitman J, Cardenas ME. Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Hum Mol Genet 2016; 25:3524-3538. [PMID: 27427385 DOI: 10.1093/hmg/ddw195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022] Open
Abstract
A major advance in understanding the progression and prognostic outcome of certain cancers, such as low-grade gliomas, acute myeloid leukaemia, and chondrosarcomas, has been the identification of early-occurring mutations in the NADP+-dependent isocitrate dehydrogenase genes IDH1 and IDH2 These mutations result in the production of the onco-metabolite D-2-hydroxyglutarate (2HG), thought to contribute to disease progression. To better understand the mechanisms of 2HG pathophysiology, we introduced the analogous glioma-associated mutations into the NADP+ isocitrate dehydrogenase genes (IDP1, IDP2, IDP3) in Saccharomyces cerevisiae Intriguingly, expression of the mitochondrial IDP1R148H mutant allele results in high levels of 2HG production as well as extensive mtDNA loss and respiration defects. We find no evidence for a reactive oxygen-mediated mechanism mediating this mtDNA loss. Instead, we show that 2HG production perturbs the iron sensing mechanisms as indicated by upregulation of the Aft1-controlled iron regulon and a concomitant increase in iron levels. Accordingly, iron chelation, or overexpression of a truncated AFT1 allele that dampens transcription of the iron regulon, suppresses the loss of respirative capacity. Additional suppressing factors include overexpression of the mitochondrial aldehyde dehydrogenase gene ALD5 or disruption of the retrograde response transcription factor RTG1 Furthermore, elevated α-ketoglutarate levels also suppress 2HG-mediated respiration loss; consistent with a mechanism by which 2HG contributes to mtDNA loss by acting as a toxic α-ketoglutarate analog. Our findings provide insight into the mechanisms that may contribute to 2HG oncogenicity in glioma and acute myeloid leukaemia progression, with the promise for innovative diagnostic and prognostic strategies and novel therapeutic modalities.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nachiketha Shamaprasad
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
66
|
Eisenberg-Bord M, Schuldiner M. Ground control to major TOM: mitochondria-nucleus communication. FEBS J 2016; 284:196-210. [PMID: 27283924 DOI: 10.1111/febs.13778] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/13/2023]
Abstract
Mitochondria have crucial functions in the cell, including ATP generation, iron-sulfur cluster biogenesis, nucleotide biosynthesis, and amino acid metabolism. All of these functions require tight regulation on mitochondrial activity and homeostasis. As mitochondria biogenesis is controlled by the nucleus and almost all mitochondrial proteins are encoded by nuclear genes, a tight communication network between mitochondria and the nucleus has evolved, which includes signaling cascades, proteins which are dual-localized to the two compartments, and sensing of mitochondrial products by nuclear proteins. All of these enable a crosstalk between mitochondria and the nucleus that allows the 'ground control' to get information on mitochondria's status. Such information facilitates the creation of a cellular balance of mitochondrial status with energetic needs. This communication also allows a transcriptional response in case mitochondrial function is impaired aimed to restore mitochondrial homeostasis. As mitochondrial dysfunction is related to a growing number of genetic diseases as well as neurodegenerative conditions and aging, elucidating the mechanisms governing the mitochondrial/nuclear communication should progress a better understanding of mitochondrial dysfunctions.
Collapse
Affiliation(s)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
67
|
Abstract
XPD, as part of the TFIIH complex, has classically been linked to the damage verification step of nucleotide excision repair (NER). However, recent data indicate that XPD, due to its iron-sulfur center interacts with the iron sulfur cluster assembly proteins, and may interact with other proteins in the cell to mediate a diverse set of biological functions including cell cycle regulation, mitosis, and mitochondrial function. In this perspective, after first reviewing the function and some of the key disease causing variants that affect XPD's interaction with TFIIH and the CDK-activating kinase complex (CAK), we investigate these intriguing cellular roles of XPD and highlight important unanswered questions that provide a fertile ground for further scientific exploration.
Collapse
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jochen Kuper
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
| | - Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
68
|
Torregrosa-Muñumer R, Goffart S, Haikonen JA, Pohjoismäki JLO. Low doses of ultraviolet radiation and oxidative damage induce dramatic accumulation of mitochondrial DNA replication intermediates, fork regression, and replication initiation shift. Mol Biol Cell 2015; 26:4197-208. [PMID: 26399294 PMCID: PMC4642854 DOI: 10.1091/mbc.e15-06-0390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Oxidative damage is believed to cause pathological mitochondrial DNA (mtDNA) rearrangements. mtDNA damage induces specific changes in its maintenance, such as formation of x-junctions and changes in replication mode. The findings explain the significance of the different replication mechanisms that have been observed in mitochondria. Mitochondrial DNA is prone to damage by various intrinsic as well as environmental stressors. DNA damage can in turn cause problems for replication, resulting in replication stalling and double-strand breaks, which are suspected to be the leading cause of pathological mtDNA rearrangements. In this study, we exposed cells to subtle levels of oxidative stress or UV radiation and followed their effects on mtDNA maintenance. Although the damage did not influence mtDNA copy number, we detected a massive accumulation of RNA:DNA hybrid–containing replication intermediates, followed by an increase in cruciform DNA molecules, as well as in bidirectional replication initiation outside of the main replication origin, OH. Our results suggest that mitochondria maintain two different types of replication as an adaptation to different cellular environments; the RNA:DNA hybrid–involving replication mode maintains mtDNA integrity in tissues with low oxidative stress, and the potentially more error tolerant conventional strand-coupled replication operates when stress is high.
Collapse
Affiliation(s)
| | - Steffi Goffart
- Department of Biology, University of Eastern Finland, 80101 Joensuu, Finland
| | - Juha A Haikonen
- Department of Biology, University of Eastern Finland, 80101 Joensuu, Finland
| | | |
Collapse
|
69
|
The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis. Int J Mol Sci 2015; 16:21486-519. [PMID: 26370974 PMCID: PMC4613264 DOI: 10.3390/ijms160921486] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/29/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.
Collapse
|
70
|
Abstract
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.
Collapse
Affiliation(s)
- Gyanesh Singh
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - U C Pachouri
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Devika Chanu Khaidem
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Aman Kundu
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushplata Singh
- Department of Medicine, Punjab Institute of Medical Sciences, Jalandhar, Punjab, India
| |
Collapse
|
71
|
Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 2015; 5:347-357. [PMID: 26122399 PMCID: PMC4501561 DOI: 10.1016/j.redox.2015.06.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the hypoxia map in the tumor niche, along with the adjoining and systemic effects of oxidative stress-based therapies. Critical point mutations and distorted redox-sensitive signaling pathways underlie the tumorigenic phenotype. Inter-cellular crosstalk under stress conditions in the tumor niche drives the behavior of tumor cells. ROS may act as either as supporter or enemy of tumor cells, depending on the context. Oxidative stress-injured cells deliver danger signals to neighboring and distant cells, hence dictating the outcome of therapy in cancer.
Collapse
Affiliation(s)
- Gina Manda
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| | - Gheorghita Isvoranu
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Maria Victoria Comanescu
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Adrian Manea
- Cellular and Molecular Pharmacology Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Bilge Debelec Butuner
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Ege University, İzmir, Turkey
| |
Collapse
|
72
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
73
|
Wolters JF, Chiu K, Fiumera HL. Population structure of mitochondrial genomes in Saccharomyces cerevisiae. BMC Genomics 2015; 16:451. [PMID: 26062918 PMCID: PMC4464245 DOI: 10.1186/s12864-015-1664-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
Background Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences. Results To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae. Conclusions Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Wolters
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| | - Kenneth Chiu
- Computer Science Department, Binghamton University, Binghamton, NY, USA.
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|