51
|
Khamaysi A, Anbtawee-Jomaa S, Fremder M, Eini-Rider H, Shimshilashvili L, Aharon S, Aizenshtein E, Shlomi T, Noguchi A, Springer D, Moe OW, Shcheynikov N, Muallem S, Ohana E. Systemic Succinate Homeostasis and Local Succinate Signaling Affect Blood Pressure and Modify Risks for Calcium Oxalate Lithogenesis. J Am Soc Nephrol 2019; 30:381-392. [PMID: 30728179 PMCID: PMC6405146 DOI: 10.1681/asn.2018030277] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/27/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In the kidney, low urinary citrate increases the risk for developing kidney stones, and elevation of luminal succinate in the juxtaglomerular apparatus increases renin secretion, causing hypertension. Although the association between stone formation and hypertension is well established, the molecular mechanism linking these pathophysiologies has been elusive. METHODS To investigate the relationship between succinate and citrate/oxalate levels, we assessed blood and urine levels of metabolites, renal protein expression, and BP (using 24-hour telemetric monitoring) in male mice lacking slc26a6 (a transporter that inhibits the succinate transporter NaDC-1 to control citrate absorption from the urinary lumen). We also explored the mechanism underlying this metabolic association, using coimmunoprecipitation, electrophysiologic measurements, and flux assays to study protein interaction and transport activity. RESULTS Compared with control mice, slc26a6-/- mice (previously shown to have low urinary citrate and to develop calcium oxalate stones) had a 40% decrease in urinary excretion of succinate, a 35% increase in serum succinate, and elevated plasma renin. Slc26a6-/- mice also showed activity-dependent hypertension that was unaffected by dietary salt intake. Structural modeling, confirmed by mutational analysis, identified slc26a6 and NaDC-1 residues that interact and mediate slc26a6's inhibition of NaDC-1. This interaction is regulated by the scaffolding protein IRBIT, which is released by stimulation of the succinate receptor SUCNR1 and interacts with the NaDC-1/slc26a6 complex to inhibit succinate transport by NaDC-1. CONCLUSIONS These findings reveal a succinate/citrate homeostatic pathway regulated by IRBIT that affects BP and biochemical risk of calcium oxalate stone formation, thus providing a potential molecular link between hypertension and lithogenesis.
Collapse
Affiliation(s)
- Ahlam Khamaysi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shireen Anbtawee-Jomaa
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadar Eini-Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liana Shimshilashvili
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sara Aharon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Tomer Shlomi
- Department of Computer Science and,Department of Biology, Technion, Haifa, Israel
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Orson W. Moe
- Department of Internal Medicine,,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, and,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Nikolay Shcheynikov
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
52
|
Becker BK, Zhang D, Soliman R, Pollock DM. Autonomic nerves and circadian control of renal function. Auton Neurosci 2019; 217:58-65. [PMID: 30704976 PMCID: PMC6415626 DOI: 10.1016/j.autneu.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular and renal physiology follow strong circadian rhythms. For instance, renal excretion of solutes and water is higher during the active period compared to the inactive period, and blood pressure peaks early in the beginning of the active period of both diurnal and nocturnal animals. The control of these rhythms is largely dependent on the expression of clock genes both in the central nervous system and within peripheral organs themselves. Although it is understood that the central and peripheral clocks interact and communicate, few studies have explored the specific mechanism by which various organ systems within the body are coordinated to control physiological processes. The renal sympathetic nervous innervation has long been known to have profound effects on renal function, and because the sympathetic nervous system follows strong circadian rhythms, it is likely that autonomic control of the kidney plays an integral role in modulating renal circadian function. This review highlights studies that provide insight into this interaction, discusses areas lacking clarity, and suggests the potential for future work to explore the role of renal autonomics in areas such as blood pressure control and chronic kidney disease.
Collapse
Affiliation(s)
- Bryan K Becker
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
| | - Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
| | - Reham Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America.
| |
Collapse
|
53
|
Mendez N, Torres-Farfan C, Salazar E, Bascur P, Bastidas C, Vergara K, Spichiger C, Halabi D, Vio CP, Richter HG. Fetal Programming of Renal Dysfunction and High Blood Pressure by Chronodisruption. Front Endocrinol (Lausanne) 2019; 10:362. [PMID: 31244775 PMCID: PMC6563621 DOI: 10.3389/fendo.2019.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
Adverse prenatal conditions are known to impose significant trade-offs impinging on health and disease balance during adult life. Among several deleterious factors associated with complicated pregnancy, alteration of the gestational photoperiod remains largely unknown. Previously, we reported that prenatal manipulation of the photoperiod has adverse effects on the mother, fetus, and adult offspring; including cardiac hypertrophy. Here, we investigated whether chronic photoperiod shifting (CPS) during gestation may program adult renal function and blood pressure regulation. To this end, pregnant rats were subjected to CPS throughout pregnancy to evaluate the renal effects on the fetus and adult offspring. In the kidney at 18 days of gestation, both clock and clock-controlled gene expression did not display a daily pattern, although there were recurrent weaves of transcriptional activity along the 24 h in the control group. Using DNA microarray, significant differential expression was found for 1,703 transcripts in CPS relative to control fetal kidney (835 up-regulated and 868 down-regulated). Functional genomics assessment revealed alteration of diverse gene networks in the CPS fetal kidney, including regulation of transcription, aldosterone-regulated Na+ reabsorption and connective tissue differentiation. In adult offspring at 90 days of age, circulating proinflammatory cytokines IL-1β and IL-6 were increased under CPS conditions. In these individuals, CPS did not modify kidney clock gene expression but had effects on different genes with specific functions in the nephron. Next, we evaluated several renal markers and the response of blood pressure to 4%NaCl in the diet for 4 weeks (i.e., at 150 days of age). CPS animals displayed elevated systolic blood pressure in basal conditions that remained elevated in response to 4%NaCl, relative to control conditions. At this age, CPS modified the expression of Nhe3, Ncc, Atp1a1, Nr3c1 (glucocorticoid receptor), and Nr3c2 (mineralocorticoid receptor); while Nkcc, Col3A1, and Opn were modified in the CPS 4%+NaCl group. Furthermore, CPS decreased protein expression of Kallikrein and COX-2, both involved in sodium handling. In conclusion, gestational chronodisruption programs kidney dysfunction at different levels, conceivably underlying the prehypertensive phenotype observed in the adult CPS offspring.
Collapse
Affiliation(s)
- Natalia Mendez
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Torres-Farfan
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Esteban Salazar
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pía Bascur
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carla Bastidas
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Spichiger
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- Faculty of Medicine, School of Dentistry, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos P. Vio
- Center of Aging and Regeneration CARE, Department of Physiology, Pontificia Universidad Católica de Chile, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Hans G. Richter
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Hans G. Richter
| |
Collapse
|
54
|
Maixent J, Fares M, François C. Infusion of herbal plant extracts for insomnia and anxiety causes a dose-dependent increase of NO and has a protective effect on the renal cellular stress caused by hypoxia and reoxygenation. CANADIAN JOURNAL OF BIOTECHNOLOGY 2018. [DOI: 10.24870/cjb.2018-000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
55
|
Al-Fifi ZI, Mujallid MI. Effect of circadian on the activities of ion transport ATPases and histological structure of kidneys in mice. Saudi J Biol Sci 2018; 26:963-969. [PMID: 31303826 PMCID: PMC6601028 DOI: 10.1016/j.sjbs.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The impacts of unnatural every day cycles (circadian) for 60 days on the histological structure of kidneys and ATPase activities in MF1 mice were studied. The exposure times were 16 h dark, 16 h light, 24 h dark, and 24 h light, and control exposure times were 12 h dark followed by 12 h light. Our results showed an increase in the total ATPase activity of mice in all groups. Additionally, the activity of the enzyme Na+/K+-ATPase was increased after 24 h darkness, 24 h light, and 16 h light exposures compared to control. The enzyme Mg+2-ATPase activities of the groups were higher when exposed to 16 h light, 24 h light, 24 h darkness and 16 h darkness. The activities of total ATPase, Na+/K+-ATPase and Mg+2-ATPase in kidneys were increased in all groups after 24 h light, 24 h darkness, 16 h darkness and 16 h light exposures. Interestingly, the activity of V-type ATPase was reduced after 16 h darkness, 24 h darkness and 16 h light. Taking everything into account, changes in the day by day cycle prompt neurotic changes, enzymatic and histological changes in the kidneys of mice. More studies should be directed to explore the impacts of light and darkness that can prompt these progressions.
Collapse
Affiliation(s)
- Zarraq I Al-Fifi
- Department of Biology, Faculty of Science, Jazan University, Saudi Arabia
| | - Mohammad I Mujallid
- Department of Biology, Faculty of Science, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
56
|
Crislip GR, Masten SH, Gumz ML. RECENT ADVANCES IN UNDERSTANDING THE CIRCADIAN CLOCK IN RENAL PHYSIOLOGY. CURRENT OPINION IN PHYSIOLOGY 2018; 5:38-44. [PMID: 30714020 DOI: 10.1016/j.cophys.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests a critical role for the molecular circadian clock in the regulation of renal function. Here, we consider the most recent advances in our understanding of the relationship between the circadian clock and renal physiology.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
| | - Sarah H Masten
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
57
|
Young ME, Reddy AB, Pollock DM. Introduction to special issue: Circadian regulation of metabolism, redox signaling and function in health and disease. Free Radic Biol Med 2018; 119:1-2. [PMID: 29604398 PMCID: PMC6348105 DOI: 10.1016/j.freeradbiomed.2018.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Akhilesh B Reddy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|