51
|
Emrich F, Penov K, Arakawa M, Dhablania N, Burdon G, Pedroza AJ, Koyano TK, Kim YM, Raaz U, Connolly AJ, Iosef C, Fischbein MP. Anatomically specific reactive oxygen species production participates in Marfan syndrome aneurysm formation. J Cell Mol Med 2019; 23:7000-7009. [PMID: 31402541 PMCID: PMC6787454 DOI: 10.1111/jcmm.14587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root aneurysm formation. Reactive oxygen species (ROS) seem to play a role in aortic wall remodelling in MFS, although the mechanism remains unknown. MFS Fbn1C1039G/+ mouse root/ascending (AS) and descending (DES) aortic samples were examined using DHE staining, lucigenin‐enhanced chemiluminescence (LGCL), Verhoeff's elastin‐Van Gieson staining (elastin breakdown) and in situ zymography for protease activity. Fbn1C1039G/+ AS‐ or DES‐derived smooth muscle cells (SMC) were treated with anti‐TGF‐β antibody, angiotensin II (AngII), anti‐TGF‐β antibody + AngII, or isotype control. ROS were detected during early aneurysm formation in the Fbn1C1039G/+ AS aorta, but absent in normal‐sized DES aorta. Fbn1C1039G/+ mice treated with the unspecific NADPH oxidase inhibitor, apocynin reduced AS aneurysm formation, with attenuated elastin fragmentation. In situ zymography revealed apocynin treatment decreased protease activity. In vitro SMC studies showed Fbn1C1039G/+‐derived AS SMC had increased NADPH activity compared to DES‐derived SMC. AS SMC NADPH activity increased with AngII treatment and appeared TGF‐β dependent. In conclusion, ROS play a role in MFS aneurysm development and correspond anatomically with aneurysmal aortic segments. ROS inhibition via apocynin treatment attenuates MFS aneurysm progression. AngII enhances ROS production in MFS AS SMCs and is likely TGF‐β dependent.
Collapse
Affiliation(s)
- Fabian Emrich
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California.,Department of Cardiothoracic Surgery, Leipzig University Heart Center, Leipzig, Germany
| | - Kiril Penov
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California.,Department of Cardiothoracic Surgery, Leipzig University Heart Center, Leipzig, Germany
| | - Mamoru Arakawa
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California.,Department of Cardiovascular Surgery, Jichi Medical University, Saitama, Japan
| | - Nathan Dhablania
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Grayson Burdon
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Tiffany K Koyano
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Young M Kim
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Uwe Raaz
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | | | - Cristiana Iosef
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| |
Collapse
|
52
|
Schwaerzer GK, Kalyanaraman H, Casteel DE, Dalton ND, Gu Y, Lee S, Zhuang S, Wahwah N, Schilling JM, Patel HH, Zhang Q, Makino A, Milewicz DM, Peterson KL, Boss GR, Pilz RB. Aortic pathology from protein kinase G activation is prevented by an antioxidant vitamin B 12 analog. Nat Commun 2019; 10:3533. [PMID: 31387997 PMCID: PMC6684604 DOI: 10.1038/s41467-019-11389-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
People heterozygous for an activating mutation in protein kinase G1 (PRKG1, p.Arg177Gln) develop thoracic aortic aneurysms and dissections (TAAD) as young adults. Here we report that mice heterozygous for the mutation have a three-fold increase in basal protein kinase G (PKG) activity, and develop age-dependent aortic dilation. Prkg1R177Q/+ aortas show increased smooth muscle cell apoptosis, elastin fiber breaks, and oxidative stress compared to aortas from wild type littermates. Transverse aortic constriction (TAC)—to increase wall stress in the ascending aorta—induces severe aortic pathology and mortality from aortic rupture in young mutant mice. The free radical-neutralizing vitamin B12-analog cobinamide completely prevents age-related aortic wall degeneration, and the unrelated anti-oxidant N-acetylcysteine ameliorates TAC-induced pathology. Thus, increased basal PKG activity induces oxidative stress in the aorta, raising concern about the widespread clinical use of PKG-activating drugs. Cobinamide could be a treatment for aortic aneurysms where oxidative stress contributes to the disease, including Marfan syndrome. Individuals carrying a gain-of-function mutation in PKG1 develop thoracic aortic aneurysms and dissections. Here Schwaerzer et al. show that mice carrying the same mutation recapitulate the human disease, and find that treatment with anti-oxidants including cobinamide, a vitamin B12 analog, prevents disease progression.
Collapse
Affiliation(s)
- Gerburg K Schwaerzer
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hema Kalyanaraman
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Darren E Casteel
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nancy D Dalton
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seunghoe Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nisreen Wahwah
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jan M Schilling
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Qian Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ayako Makino
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dianna M Milewicz
- Division of Medical Genetics and Cardiology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kirk L Peterson
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gerry R Boss
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Renate B Pilz
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
53
|
Lee VS, Halabi CM, Broekelmann TJ, Trackman PC, Stitziel NO, Mecham RP. Intracellular retention of mutant lysyl oxidase leads to aortic dilation in response to increased hemodynamic stress. JCI Insight 2019; 5:127748. [PMID: 31211696 PMCID: PMC6693828 DOI: 10.1172/jci.insight.127748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Heterozygous missense mutations in lysyl oxidase (LOX) are associated with thoracic aortic aneurysms and dissections. To assess how LOX mutations modify protein function and lead to aortic disease, we studied the factors that influence the onset and progression of vascular aneurysms in mice bearing a Lox mutation (p.M292R) linked to aortic dilation in humans. We show that mice heterozygous for the M292R mutation did not develop aneurysmal disease unless challenged with increased hemodynamic stress. Vessel dilation was confined to the ascending aorta although both the ascending and descending aortae showed changes in vessel wall structure, smooth muscle cell number and inflammatory cell recruitment that differed between wild-type and mutant animals. Studies with isolated cells found that M292R-mutant Lox is retained in the endoplasmic reticulum and ultimately cleared through an autophagy/proteasome pathway. Because the mutant protein does not transit to the Golgi where copper incorporation occurs, the protein is never catalytically active. These studies show that the M292R mutation results in LOX loss-of-function due to a secretion defect that predisposes the ascending aorta in mice (and by extension humans with similar mutations) to arterial dilation when exposed to risk factors that impart stress to the arterial wall.
Collapse
MESH Headings
- Aortic Dissection/genetics
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Animals
- Aorta/cytology
- Aorta/pathology
- Aorta/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Embryo, Mammalian
- Endoplasmic Reticulum/metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Fibroblasts/ultrastructure
- Gene Knock-In Techniques
- Genetic Predisposition to Disease
- Golgi Apparatus/metabolism
- Heterozygote
- Humans
- Hypertension/complications
- Hypertension/physiopathology
- Loss of Function Mutation
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Primary Cell Culture
- Protein-Lysine 6-Oxidase/genetics
- Protein-Lysine 6-Oxidase/metabolism
- Risk Factors
- Stress, Physiological
- Vasodilation/physiology
Collapse
Affiliation(s)
| | - Carmen M. Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Philip C. Trackman
- Department of Molecular and Cellular Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Nathan O. Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
54
|
Tang Y, Huang Q, Liu C, Ou H, Huang D, Peng F, Liu C, Mo Z. p22phox promotes Ang-II-induced vascular smooth muscle cell phenotypic switch by regulating KLF4 expression. Biochem Biophys Res Commun 2019; 514:280-286. [PMID: 31030942 DOI: 10.1016/j.bbrc.2019.04.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
NADPH oxidase (Nox) is the main source of reactive oxygen species in vascular diseases, which have been implicated in promoting VSMCs phenotypic switch. P22phox, the indispensable component of the complex Nox, is required for their activity and stability. Krüppel-like factor 4 (KLF4) is an important transcriptional regulator of VSMCs phenotypic switch. Both KLF4 and p22phox are involved in the proliferation, migration and differentiation of VSMC. This study aims to determine whether and how p22phox regulates KLF4 expression in phenotypic switching of VSMCs. In cultured primary rat VSMCs, we noticed that the expression of P22phox was significantly increased in combination with VSMCs phenotypic switch and up-regulated KLF4 expression in Ang-II-treated cells. Ang-II-induced VSMC dedifferentiation, proliferation, migration, KLF4 expression, H2O2 production and the phosphorylation of AKT, ERK1/2 were all inhibited by knockdown of P22phox. Furthermore, H2O2 treatment effectively enhanced the phosphorylation of AKT, ERK1/2 and the expression of KLF4, whereas LY294002 (a specific inhibitor of PI3K), U0126 (a specific inhibitor of ERK1/2) significantly attenuated the H2O2-induced up-regulation of KLF4. In conclusion, these results demonstrated that p22phox promotes Ang-II-induced VSMC phenotypic switch via the H2O2-ERK1/2/AKT-KLF4 signaling pathway.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaoyan Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hongji Ou
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Huang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengling Peng
- Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Changhui Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
55
|
He H, Yu B, Liu Z, Ye G, You W, Hong Y, Lian Q, Zhang Y, Li X. Vascular progenitor cell senescence in patients with Marfan syndrome. J Cell Mol Med 2019; 23:4139-4152. [PMID: 30920150 PMCID: PMC6533473 DOI: 10.1111/jcmm.14301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular progenitor cells (VPCs) present in the adventitia of the vessel wall play a critical role in the regulation of vascular repair following injury. This study aimed to assess the function of VPCs isolated from patients with Marfan syndrome (MFS). VPCs were isolated from control and MFS donors and characterized. Compared with control‐VPCs, MFS‐VPCs exhibited cellular senescence as demonstrated by increased cell size, higher SA‐β‐gal activity and elevated levels of p53 and p21. RNA sequencing showed that several cellular process‐related pathways including cell cycle and cellular senescence were significantly enriched in MFP‐VPCs. Notably, the expression level of TGF‐β1 was much higher in MFS‐VPCs than control‐VPCs. Treatment of control‐VPCs with TGF‐β1 significantly enhanced mitochondrial reactive oxidative species (ROS) and induced cellular senescence whereas inhibition of ROS reversed these effects. MFS‐VPCs displayed increased mitochondrial fusion and decreased mitochondrial fission. Treatment of control‐VPCs with TGF‐β1 increased mitochondrial fusion and reduced mitochondrial fission. Nonetheless, treatment of mitofusin2 (Mfn2)‐siRNA inhibited TGF‐β1‐induced mitochondrial fusion and cellular senescence. Furthermore, TGF‐β1‐induced mitochondrial fusion was mediated by the AMPK signalling pathway. Our study shows that TGF‐β1 induces VPC senescence in patients with MFS by mediating mitochondrial dynamics via the AMPK signalling pathway.
Collapse
Affiliation(s)
- Haiwei He
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baoqi Yu
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Zipeng Liu
- Center for Genomic Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Gen Ye
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei You
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimei Hong
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qizhou Lian
- Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
56
|
Wagner AH, Zaradzki M, Arif R, Remes A, Müller OJ, Kallenbach K. Marfan syndrome: A therapeutic challenge for long-term care. Biochem Pharmacol 2019; 164:53-63. [PMID: 30926475 DOI: 10.1016/j.bcp.2019.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by mutations in the fibrillin-1 gene. Acute aortic dissection is the leading cause of death in patients suffering from MFS and consequence of medial degeneration and aneurysm formation. In addition to its structural function in the formation of elastic fibers, fibrillin has a major role in keeping maintaining transforming growth factor β (TGF-β) in an inactive form. Dysfunctional fibrillin increases TGF-β bioavailability and concentration in the extracellular matrix, leading to activation of proinflammatory transcription factors. In turn, these events cause increased expression of matrix metalloproteinases and cytokines that control the migration and infiltration of inflammatory cells into the aorta. Moreover, TGF-β causes accumulation of reactive oxygen species leading to further degradation of elastin fibers. All these processes result in medial elastolysis, which increases the risk of vascular complications. Although MFS is a hereditary disease, symptoms and traits are usually not noticeable at birth. During childhood or adolescence affected individuals present with severe tissue weaknesses, especially in the aorta, heart, eyes, and skeleton. Considering this, even young patients should avoid activities that exert additional stress and pressure on the aorta and the cardiovascular system. Thus, if the diagnosis is made and prophylactic treatment is initiated in a timely fashion, MFS and its preliminary pathophysiologic vascular remodeling can be successfully ameliorated reducing the risk of life-threatening complications. This commentary focuses on new research opportunities and molecular findings on MFS, discusses future challenges and possible long-term therapies.
Collapse
Affiliation(s)
- A H Wagner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Germany.
| | - M Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - R Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - A Remes
- Department of Internal Medicine III, University Hospital Kiel, Kiel, Germany
| | - O J Müller
- Department of Internal Medicine III, University Hospital Kiel, Kiel, Germany
| | - K Kallenbach
- INCCI HaerzZenter, Department of Cardiac Surgery, Luxembourg, Luxembourg
| |
Collapse
|
57
|
van Andel MM, Groenink M, Zwinderman AH, Mulder BJM, de Waard V. The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients⁻Insights from Rodent-Based Animal Studies. Int J Mol Sci 2019; 20:E1122. [PMID: 30841577 PMCID: PMC6429290 DOI: 10.3390/ijms20051122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Marfan syndrome (MFS) patients are at risk for cardiovascular disease. In particular, for aortic aneurysm formation, which ultimately can result in a life-threatening aortic dissection or rupture. Over the years, research into a sufficient pharmacological treatment option against aortopathy has expanded, mostly due to the development of rodent disease models for aneurysm formation and dissections. Unfortunately, no optimal treatment strategy has yet been identified for MFS. The biologically-potent polyphenol resveratrol (RES), that occurs in nuts, plants, and the skin of grapes, was shown to have a positive effect on aortic repair in various rodent aneurysm models. RES demonstrated to affect aortic integrity and aortic dilatation. The beneficial processes relevant for MFS included the improvement of endothelial dysfunction, extracellular matrix degradation, and smooth muscle cell death. For the wide range of beneficial effects on these mechanisms, evidence was found for the following involved pathways; alleviating oxidative stress (change in eNOS/iNOS balance and decrease in NOX4), reducing protease activity to preserve the extracellular matrix (decrease in MMP2), and improving smooth muscle cell survival affecting aortic aging (changing the miR21/miR29 balance). Besides aortic features, MFS patients may also suffer from manifestations concerning the heart, such as mitral valve prolapse and left ventricular impairment, where evidence from rodent models shows that RES may aid in promoting cardiomyocyte survival directly (SIRT1 activation) or by reducing oxidative stress (increasing superoxide dismutase) and increasing autophagy (AMPK activation). This overview discusses recent RES studies in animal models of aortic aneurysm formation and heart failure, where different advantageous effects have been reported that may collectively improve the aortic and cardiac pathology in patients with MFS. Therefore, a clinical study with RES in MFS patients seems justified, to validate RES effectiveness, and to judge its suitability as potential new treatment strategy.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Radiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
58
|
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives. Initially, they were considered as metabolic by-products (of mitochondria in particular), which consistently lead to aging and disease. Over the last decades, however, it became increasingly apparent that virtually all eukaryotic cells possess specifically ROS-producing enzymes, namely, NOX NADPH oxidases. In most mammals, there are seven NOX isoforms: three closely related isoforms, NOX1, 2, 3, which are activated by cytoplasmic subunits; NOX4, which appears to be constitutively active; and the EF-hand-containing Ca2+-activated isoforms NOX5 and DUOX1 and 2. Loss-of-function mutations in NOX genes can lead to serious human disease. NOX2 deficiency leads to primary immune deficiency, while DUOX2 deficiency presents as congenital hypothyroidism. Nox-deficient mice provide important tools to explore the physiological functions of various NADPH oxidases as a loss of function in Nox2, Nox3, and Duox2 leads to a spontaneous phenotype. The genetic absence of Nox1, Nox4, and Duox1 does not result in an obvious mouse phenotype (the NOX5 gene is absent in rodents and can therefore not be studied using knockout mice). Since the discovery of the NOX family at the turn of the millennium, much progress in understanding the biochemistry and the physiology of NOX has been made; however many questions remain unanswered to date. This chapter is an overview of our present knowledge on mammalian NOX/DUOX enzymes.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
59
|
Takeda N, Hara H, Fujiwara T, Kanaya T, Maemura S, Komuro I. TGF-β Signaling-Related Genes and Thoracic Aortic Aneurysms and Dissections. Int J Mol Sci 2018; 19:ijms19072125. [PMID: 30037098 PMCID: PMC6073540 DOI: 10.3390/ijms19072125] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor-β (TGF)-β signaling plays a crucial role in the development and maintenance of various organs, including the vasculature. Accordingly, the mutations in TGF-β signaling pathway-related genes cause heritable disorders of the connective tissue, such as Marfan syndrome (MFS), Loeys-Dietz syndrome (LDS), and Shprintzen-Goldberg syndrome (SGS), and these syndromes may affect skeletal, ocular, pulmonary, and cardiovascular systems. Aortic root aneurysms are common problems that can result in aortic dissection or rupture, which is the leading cause of sudden death in the natural history of MFS and LDS, and recent improvements in surgical treatment have improved life expectancy. However, there is currently no genotype-specific medical treatment. Accumulating evidence suggest that not only structural weakness of connective tissue but also increased TGF-β signaling contributes to the complicated pathogenesis of aortic aneurysm formation, but a comprehensive understanding of governing molecular mechanisms remains lacking. Inhibition of angiotensin II receptor signaling and endothelial dysfunction have gained attention as a possible MFS treatment strategy, but interactions with TGF-β signaling remain elusive. Heterozygous loss-of-function mutations in TGF-β receptors 1 and 2 (TGFBR1 and TGFBR2) cause LDS, but TGF-β signaling is activated in the aorta (referred to as the TGF-β paradox) by mechanisms yet to be elucidated. In this review, we present and discuss the current understanding of molecular mechanisms responsible for aortopathies of MFS and related disorders.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Hironori Hara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Takayuki Fujiwara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Tsubasa Kanaya
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Sonoko Maemura
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|