51
|
Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 2010; 29:1865-76. [PMID: 20453831 DOI: 10.1038/emboj.2010.83] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 04/09/2010] [Indexed: 01/14/2023] Open
Abstract
Defects in ribosome biogenesis and function are present in a growing list of human syndromes associated with cancer susceptibility. One example is X-linked dyskeratosis congenita (X-DC) in which the DKC1 gene, encoding for an enzyme that modifies ribosomal RNA, is found to be mutated. How ribosome dysfunction leads to cancer remains poorly understood. A critical cellular response that counteracts cellular transformation is oncogene-induced senescence (OIS). Here, we show that during OIS, a switch between cap- and internal ribosome entry site (IRES)-dependent translation occurs. During this switch, an IRES element positioned in the 5'untranslated region of p53 is engaged and facilitates p53 translation. We further show that in DKC1(m) cells, p53 IRES-dependent translation is impaired during OIS ex vivo and on DNA damage in vivo. This defect in p53 translation perturbs the cellular response that counteracts oncogenic insult. We extend these findings to X-DC human patient cells in which similar impairments in p53 IRES-dependent translation are observed. Importantly, re-introduction of wild-type DKC1 restores p53 expression in these cells. These results provide insight into the basis for cancer susceptibility in human syndromes associated with ribosome dysfunction.
Collapse
|
52
|
Kobayashi T, Ishida J, Musashi M, Ota S, Yoshida T, Shimizu Y, Chuma M, Kawakami H, Asaka M, Tanaka J, Imamura M, Kobayashi M, Itoh H, Edamatsu H, Sutherland LC, Brachmann RK. p53 transactivation is involved in the antiproliferative activity of the putative tumor suppressor RBM5. Int J Cancer 2010; 128:304-18. [PMID: 20309933 DOI: 10.1002/ijc.25345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 03/09/2010] [Indexed: 12/12/2022]
Abstract
RBM5 (RNA-binding motif protein 5) is a nuclear RNA binding protein containing 2 RNA recognition motifs. The RBM5 gene is located at the tumor suppressor locus 3p21.3. Deletion of this locus is the most frequent genetic alteration in lung cancer, but is also found in other human cancers. RBM5 is known to induce apoptosis and cell cycle arrest but the molecular mechanisms of RBM5 function are poorly understood. Here, we show that RBM5 is important for the activity of the tumor suppressor protein p53. Overexpression of RBM5 enhanced p53-mediated inhibition of cell growth and colony formation. Expression of RBM5 augmented p53 transcriptional activity in reporter gene assays and resulted in increased mRNA and protein levels for endogenous p53 target genes. In contrast, shRNA-mediated knockdown of endogenous RBM5 led to decreased p53 transcriptional activity and reduced levels of mRNA and protein for endogenous p53 target genes. RBM5 affected protein, but not mRNA, levels of endogenous p53 after DNA damage suggest that RBM5 contributes to p53 activity through post-transcriptional mechanisms. Our results show that RBM5 contributes to p53 transcriptional activity after DNA damage and that growth suppression and apoptosis mediated by RBM5 are linked to activity of the tumor suppressor protein p53.
Collapse
|
53
|
Yadavilli S, Chen Z, Albrecht T, Muganda PM. Mechanism of diepoxybutane-induced p53 regulation in human cells. J Biochem Mol Toxicol 2010; 23:373-86. [PMID: 20024960 DOI: 10.1002/jbt.20300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diepoxybutane (DEB) is the most potent active metabolite of the environmental chemical 1,3-butadiene (BD). BD is a known mutagen and human carcinogen and possesses multisystems organ toxicity. We previously reported the elevation of p53 in human TK6 lymphoblasts undergoing DEB-induced apoptosis. In this study, we have characterized the DEB-induced p53 accumulation and investigated the mechanisms by which DEB regulates this p53 accumulation. The elevation of p53 levels in DEB-exposed TK6 lymphoblasts and human embryonic lung (HEL) human fibroblasts was found to be largely due to the stabilization of the p53 protein. DEB increased the acetylation of p53 at lys-382, dramatically reduced complex formation between p53 and its regulator protein mdm2 and induced the phosphorylation of p53 at serines 15, 20, 37, 46, and 392 in human lymphoblasts. A dramatic increase in phosphorylation of p53 at serine 15 in correlation to total p53 levels was observed in DEB-exposed Ataxia Telangiectasia Mutated (ATM) proficient human lymphoblasts as compared to DEB-exposed ATM-deficient human lymphoblasts; this implicates the ATM kinase in the elevation of p53 levels in DEB-exposed cells. Collectively, these findings explain for the first time the mechanism by which p53 accumulates in DEB-exposed cells and contributes to the understanding of the molecular toxicity of DEB and BD.
Collapse
Affiliation(s)
- Sridevi Yadavilli
- Environmental Toxicology Ph.D. Program, Southern University, Baton Rouge, LA 70813, USA
| | | | | | | |
Collapse
|
54
|
p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:264-73. [DOI: 10.1016/j.cbpb.2009.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/18/2009] [Accepted: 06/18/2009] [Indexed: 12/17/2022]
|
55
|
Wang Z, Zheng M, Li Z, Li R, Jia L, Xiong X, Southall N, Wang S, Xia M, Austin CP, Zheng W, Xie Z, Sun Y. Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res 2009; 69:6556-64. [PMID: 19679550 DOI: 10.1158/0008-5472.can-09-0891] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p53 is regulated at multiple levels. We report here that p53, in multiple lines of human cancer cells, is down-regulated by cardiac glycoside drugs digoxin and ouabain, potent inhibitors of Na(+)/K(+)-ATPase. These drugs reduced the basal levels of p53 protein at nanomolar concentrations in a dose-, time-, and cancer cell line-dependent manner, but independent of p53 status of wild-type or mutant. The drugs also reduced the levels of p53 induced by its activators as well as p53 transfected into human cancer cells, regardless of its status. Interestingly, the drugs had no effect on endogenous p53 in two immortalized human cell lines. Mechanistically, p53 reduction occurred not at the mRNA levels but at the protein levels, as a result of reduced protein synthesis rather than enhanced degradation. The cellular sensitivity to drug-induced p53 reduction was not associated with the levels of alphasubunits of Na(+)/K(+)-ATPase in different cell lines. Although lowering extracellular K(+) did not reduce p53 as did ouabain and digoxin, it did potentiate both digoxin- and ouabain-induced p53 reduction in sensitive lines. Finally, p53 reduction seems to be triggered by activation of Src/mitogen-activated protein kinase (MAPK) signaling pathways upon drug binding to the Na(+)/K(+)-ATPase and can be completely blocked by the inhibitors of Src or MAP/ERK kinase. This is the first report that cardiac glycoside drugs, by initiating the Src/MAPK signaling pathways, reduce the p53 levels via inhibition of p53 protein synthesis. The drugs may be useful in the treatment of human cancers with a gain-of-function p53 mutation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Grover R, Candeias MM, Fåhraeus R, Das S. p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 2009; 28:2766-72. [DOI: 10.1038/onc.2009.138] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
57
|
Abstract
Orchestration of the lifetimes and conformations of intrinsically unstructured proteins and their mRNAs ensure precision and flexibility in biological control. The lifetimes and conformations of intrinsically unstructured proteins (IUPs) and their mRNAs are orchestrated to ensure precision, speed and flexibility in biological control.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
58
|
Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H. Mitochondrial nuclear receptors and transcription factors: who's minding the cell? J Neurosci Res 2008; 86:961-71. [PMID: 18041090 DOI: 10.1002/jnr.21564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria are power organelles generating biochemical energy, ATP, in the cell. Mitochondria play a variety of roles, including integrating extracellular signals and executing critical intracellular events, such as neuronal cell survival and death. Increasing evidence suggests that a cross-talk mechanism between mitochondria and the nucleus is closely related to neuronal function and activity. Nuclear receptors (estrogen receptors, thyroid (T3) hormone receptor, peroxisome proliferators-activated receptor gamma2) and transcription factors (cAMP response binding protein, p53) have been found to target mitochondria and exert prosurvival and prodeath pathways. In this context, the regulation of mitochondrial function via the translocation of nuclear receptors and transcription factors may underlie some of the mechanisms involved in neuronal survival and death. Understanding the function of nuclear receptors and transcription factors in the mitochondria may provide important pharmacological utility in the treatment of neurodegenerative conditions. Thus, the modulation of signaling pathways via mitochondria-targeting nuclear receptors and transcription factors is rapidly emerging as a novel therapeutic target.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
59
|
Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 2008; 16:942-6. [PMID: 18388916 DOI: 10.1038/mt.2008.51] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The selective delivery of small interfering RNA (siRNA) to metastatic tumors remains a challenging task. We have developed a nanoparticle (NP) formulation composed of siRNA, a carrier DNA, a polycationic peptide, and cationic liposomes. The NP was obtained by a self-assembling process, followed by surface modification with a polyethylene glycol (PEG)-conjugated ligand, anisamide. The NP was PEGylated and a ligand was presented to target sigma receptor-expressing murine melanoma cells, B16F10. The lung metastasis model was established by intravenous (i.v.) injection of the B16F10 cells into C57BL/6 mice. A mixture of siRNA against MDM2, c-myc, and vascular endothelial growth factor (VEGF) co-formulated in the targeted NP caused simultaneous silencing of each of the oncogenes in the metastatic nodules. Two consecutive i.v. injections of siRNA in the targeted NP significantly reduced the lung metastasis (approximately 70-80%) at a relatively low dose (0.45 mg/kg), whereas free siRNA and the nontargeted NP showed little effect. This targeted NP formulation significantly prolonged the mean survival time of the animals by 30% as compared to the untreated controls. At the therapeutic dose, the targeted NP showed little local and systemic immunotoxicity and did not decrease the body weight or damage the major organs.
Collapse
Affiliation(s)
- Shyh-Dar Li
- Division of Molecular Pharmaceutics, Department of Pharmaceutical Sciences, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
60
|
Morimoto T, Fujita M, Kawamura T, Sunagawa Y, Takaya T, Wada H, Shimatsu A, Kita T, Hasegawa K. Myocardial Regulation of p300 and p53 by Doxorubicin Involves Ubiquitin Pathways. Circ J 2008; 72:1506-11. [DOI: 10.1253/circj.cj-07-1076] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatsuya Morimoto
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Masatoshi Fujita
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University
| | - Teruhisa Kawamura
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Yoichi Sunagawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Tomohide Takaya
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Hiromichi Wada
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| | - Akira Shimatsu
- Clinical Research Institute, Kyoto Medical Center, National Hospital Organization
| | - Toru Kita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Koji Hasegawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization
| |
Collapse
|
61
|
Abstract
This review discusses the need to re-examine some popular but unproven ideas about regulation of translation in eukaryotes. Translational control is invoked often on superficial grounds, such as a discrepancy between mRNA and protein levels which could be explained instead by rapid turnover of the protein. It is essential to verify that there is translational control (i.e., essential to rule out alternative mechanisms) before asking how translation is regulated. Many of the postulated control mechanisms are dubious. It is easy to create artifactual regulation (a slight increase or decrease in translation) by over-expressing recombinant RNA-binding proteins. The internal-initiation hypothesis is the source of other misunderstandings. Recent claims about the involvement of internal ribosome entry sequences (IRESs) in cancer and other diseases are discussed. The scanning model for initiation provides a more credible framework for understanding many aspects of translation, including ways to restrict the production of potent regulatory proteins which would be harmful if over-expressed. The rare production in eukaryotes of dicistronic mRNAs (e.g., from retrotransposons) raises questions about how the 3' cistron gets translated. Some proposed mechanisms are discussed, but the available evidence does not allow resolution of the issue.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| |
Collapse
|