51
|
Chen JY, Li HX, Mu SY, Song HY, Wu ZL, Yang TB, Jiang J, He WM. Electrocatalytic three-component synthesis of 4-halopyrazoles with sodium halide as the halogen source. Org Biomol Chem 2022; 20:8501-8505. [DOI: 10.1039/d2ob01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The first example of the electrocatalytic multicomponent synthesis of 4-chloro/bromo/iodopyrazoles from hydrazines, acetylacetones and sodium halides under chemical oxidant- and external electrolyte-free conditions has been developed.
Collapse
Affiliation(s)
- Jin-Yang Chen
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Xia Li
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Si-Yu Mu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hai-Yang Song
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
52
|
Liu HF, He MX, Tang HT. Electrochemical C–H functionalization to synthesize 3-hydroxyalkylquinoxalin-2(1 H)-ones via quinoxalin-2(1 H)-ones and aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01281b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported an electrocatalytic direct C3-hydroxyalkylation of quinoxalin-2(1H)-ones to construct 3-hydroxyalkylquinoxalin-2(1H)-one derivatives, which uses unprotected quinoxalin-2(1H)-ones and aliphatic aldehydes as substrates.
Collapse
Affiliation(s)
- Han-Fu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, Guilin 541199, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, Guilin 541199, People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
53
|
Li H, Chen P, Wu Z, Lu Y, Peng J, Chen J, He W. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH 4SCN. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
54
|
Wei W, Zhong Y, Feng Y, Gao L, Tang H, Pan Y, Ma X, Mo Z. Electrochemically Mediated Direct C(
sp
3
)−H Sulfonylation of Xanthene Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wan‐Jie Wei
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Yu‐Jing Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yu‐Feng Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Lei Gao
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Xian‐Li Ma
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| |
Collapse
|
55
|
Cheng F, Chen T, Huang YQ, Li JW, Zhou C, Xiao X, Chen FE. Copper-Catalyzed Ullmann-Type Coupling and Decarboxylation Cascade of Arylhalides with Malonates to Access α-Aryl Esters. Org Lett 2021; 24:115-120. [PMID: 34932360 DOI: 10.1021/acs.orglett.1c03688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a high-efficiency and practical Cu-catalyzed cross-coupling to directly construct versatile α-aryl-esters by utilizing readily available aryl bromides (or chlorides) and malonates. These gram-scale approaches occur with turnovers of up to 1560 and are smoothly conducted by the usage of a low catalyst loading, a new available ligand, and a green solvent. A variety of functional groups are tolerated, and the application occurs with α-aryl-esters to access nonsteroidal anti-inflammatory drugs (NSAIDs) on the gram scale.
Collapse
Affiliation(s)
- Fei Cheng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Tao Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Wei Li
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chen Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P. R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
56
|
Ma Y, Wu S, Jiang S, Xiao F, Deng G. Electrosynthesis of Azobenzenes Directly from Nitrobenzenes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yanfeng Ma
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shanghui Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou Guangdong 510640 China
| |
Collapse
|
57
|
Zhong JS, Yang ZX, Ding CL, Huang YF, Zhao Y, Yan H, Ye KY. Desulfonylative Electrocarboxylation with Carbon Dioxide. J Org Chem 2021; 86:16162-16170. [PMID: 34355896 DOI: 10.1021/acs.joc.1c01261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrocarboxylation of organic halides is one of the most investigated electrochemical approaches for converting thermodynamically inert carbon dioxide (CO2) into value-added carboxylic acids. By converting organic halides into their sulfone derivatives, we have developed a highly efficient electrochemical desulfonylative carboxylation protocol. Such a strategy takes advantage of CO2 as the abundant C1 building block for the facile preparation of multifunctionalized carboxylic acids, including the nonsteroidal anti-inflammatory drug ibuprofen, under mild reaction conditions.
Collapse
Affiliation(s)
- Jun-Song Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Xin Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Lin Ding
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ya-Feng Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory (SZBL), Guangdong 518000, China
| | - Hong Yan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
58
|
Lu Z, Zhang Q, Ke M, Hu S, Xiao X, Chen F. TfOH-Catalyzed [4 + 1] Annulation of p-Quinone Methides with α-Aryl Diazoacetates: Straightforward Access to Highly Functionalized 2,3-Dihydrobenzofurans. J Org Chem 2021; 86:7625-7635. [PMID: 33993694 DOI: 10.1021/acs.joc.1c00672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a methodology for the greatly efficient construction of significant 2,3-dihydrobenzofuran scaffolds bearing a quaternary carbon center at the C2 position by means of [4 + 1] annulation reactions between p-quinone methides and α-aryl diazoacetates as C1 synthons through organocatalysis by readily accessible TfOH catalyst under mild and transition metal-free conditions. This metal-free protocol furnishes an operationally simple and swift process for the free assembly of diverse highly functionalized 2,3-dihydrobenzofurans and also features broad substrate scope, excellent functional group compatibility, and environmental friendliness. Mechanistic investigation suggested that the reaction undergoes a rapid cascade protonation/intermolecular Michael addition/intramolecular substitution process.
Collapse
Affiliation(s)
- Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qingchun Zhang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
59
|
Tong S, Li K, Ouyang X, Song R, Li J. Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
60
|
Wu H, Yu X, Cao Z. Electrochemical Multicomponent Synthesis of α-Ketoamides from α-Oxocarboxylic Acids, Isocyanides and Water. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202111010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
61
|
Cheng S, Ou C, Lin H, Jia J, Tang H, Pan Y, Huang G, Meng X. Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
62
|
Chen N, Ye Z, Zhang F. Recent progress on electrochemical synthesis involving carboxylic acids. Org Biomol Chem 2021; 19:5501-5520. [PMID: 34079974 DOI: 10.1039/d1ob00420d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carboxylic acids are not only essential sections of medicinal molecules, natural products and agrochemicals but also basic building blocks for organic synthesis. However, high temperature, expensive catalysts and excess oxidants are normally required for carboxylic acid group transformations. Therefore, more eco-friendly and efficient methods are urgently needed. Organic electrochemistry, as an environmentally friendly and sustainable synthetic method, can potentially avoid the above problems and is favored by more and more organic chemists. This review summarized the recent progress on the electrochemical synthesis of carboxylic acids to construct more complex compounds, emphasizing the development of electrosynthesis methodologies and mechanisms in order to attract more chemists to recognize the importance and applications of electrochemical synthesis.
Collapse
Affiliation(s)
- Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|