51
|
Chen J, Zhang X, Chen Y, Zhao X, Anthony B, Xu X. Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. ULTRASONICS SONOCHEMISTRY 2020; 69:105268. [PMID: 32731126 DOI: 10.1016/j.ultsonch.2020.105268] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 05/08/2023]
Abstract
Structure and rheological properties of myosin in myofibrillar protein (MP) after single frequency pulsed ultrasound (SFPU, G1-G2) and dual frequency pulsed ultrasound (DFPU, G3) were compared for the first time. Results showed SFPU and DFPU induced "stress response" through the action of cavitation on multiple myosin. In addition, there may be a certain quorum sensing among myosin, inducing a more stable β-antiparallel structure to resist negative effects of cavitation force. Results of particle size and synchronous fluorescence indicated that structure of myosin in MPs changed through stress. The increase in pH also assisted in the ultrasound process (G5-G7). Notably, DFPU induced stronger quorum sensing and formed a more stable structure. More so, effects of (-)-epigallocatechin-3-gallate (EGCG) and baicalein (BN) on the emulsion and gel properties of DFPU treated and non-treated MPs were also investigated. Results showed that ultrasound increased the stability of emulsion. Additionally, the texture and expressible moisture content (EMOC) of the gel were also improved after treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen 52074, Germany
| | - Yan Chen
- School of Mathematical Sciences, Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Zhao
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bassey Anthony
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
52
|
Physicochemical and rheological changes of oyster (Crassostrea gigas) protein affected by high-pressure homogenization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Xu Y, Xu X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 20:458-500. [DOI: 10.1111/1541-4337.12665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yujuan Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu P.R. China
| |
Collapse
|
54
|
Liu H, Zhang H, Liu Q, Chen Q, Kong B. Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound. ULTRASONICS SONOCHEMISTRY 2020; 67:105160. [PMID: 32388315 DOI: 10.1016/j.ultsonch.2020.105160] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 05/08/2023]
Abstract
The insolubility and poor dispersion of myofibrillar proteins (MPs) in water have always been the primary factors limiting the development of novel meat-based products. This study aimed to explore the mechanisms by which high-intensity ultrasound (HIU) at various power settings (0, 150, 300, 450 and 600 W) improved the solubility and dispersion stability of MPs in water. According to the solubility analysis, HIU significantly increased the water solubility of MPs (p < 0.05). The MPs treated with 450 W exhibited the best dispersion stability in water, which corresponded to the highest zeta-potential, smallest particle size and most uniform distribution (p < 0.05). Based on the circular dichroism and fluorescence spectroscopy and surface hydrophobicity analysis, the loss of the MP superhelix and subsequent random dissociation of the filamentous myosin structure appeared to be the main mechanism of MP solubilization. In addition, according to the zeta-potential, SDS-PAGE and Nano LC-ESI-MS/MS analyses, the increase in surface charge and the formation of soluble oligomers may provide additional forces to inhibit filament assembly, thereby improving the stability of the aqueous MP suspension. Atomic force microscopy (AFM) observations further confirmed these results. In conclusion, an HIU treatment effectively improves the solubility and dispersion stability of MP in water.
Collapse
Affiliation(s)
- Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
55
|
Li N, Yu JJ, Jin N, Chen Y, Li SH, Chen Y. Modification of the physicochemical and structural characteristics of zein suspension by dielectric barrier discharge cold plasma treatment. J Food Sci 2020; 85:2452-2460. [PMID: 32691480 DOI: 10.1111/1750-3841.15350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022]
Abstract
Owing to the strong hydrophobicity of zein, improved solubility is required to enhance the recovery of bioactive peptides. Using a zein suspension prepared by the antisolvent precipitation method, the impact of varying the voltage during dielectric barrier discharge (DBD) treatment on the physicochemical and conformational properties of zein in water was investigated. Analysis of the particle size, specific surface area, and free sulfhydryl content indicated that the protein solubility was maximized by treatment at 70 V for 70 s. DBD treatment destroyed covalent bonds and introduced some hydrophilic groups onto the zein surface, thus enhancing the contact area with water molecules and leading to a more uniform dispersion. A decrease in the hydrodynamic radius of zein micelles indicated that intermolecular interactions were disrupted, thus improving dispersion stability. A more hydrophilic microenvironment was formed owing to the reduction in hydrophobic interactions. Additionally, evaluation of the secondary structure demonstrated that DBD treatment broke hydrogen bonds, resulting in a loose conformation with more exposed sites of action for water. These results are expected to facilitate the development of technologies for improving utilization of zein. PRACTICAL APPLICATION: Strong hydrophobicity limits the application of zein in the food industry. The study indicated that DBD treatment could promote loose structure, and improve dispersion stability and hydrophilicity of zein suspension prepared by antisolvent precipitation method. This work revealed the potential of cold plasma treatment for modifying zein and other insoluble proteins, which would expand their scope of application.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiao-Jiao Yu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nan Jin
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yue Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shu-Hong Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ye Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
56
|
Levy R, Okun Z, Shpigelman A. High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09239-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
57
|
Fasolin L, Pereira R, Pinheiro A, Martins J, Andrade C, Ramos O, Vicente A. Emergent food proteins – Towards sustainability, health and innovation. Food Res Int 2019; 125:108586. [DOI: 10.1016/j.foodres.2019.108586] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
|