51
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point‐of‐care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
|
52
|
Teaima MH, Elasaly MK, Omar SA, El-Nabarawi MA, Shoueir KR. Wound healing activities of polyurethane modified chitosan nanofibers loaded with different concentrations of linezolid in an experimental model of diabetes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
53
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Modelling of Stem Cells Microenvironment Using Carbon-Based Scaffold for Tissue Engineering Application-A Review. Polymers (Basel) 2021; 13:4058. [PMID: 34883564 PMCID: PMC8658938 DOI: 10.3390/polym13234058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
54
|
Deng L, Wang Y, Cai C, Wei Z, Fu Y. 3D-cellulose acetate-derived hierarchical network with controllable nanopores for superior Li + transference number, mechanical strength and dendrites hindrance. Carbohydr Polym 2021; 274:118620. [PMID: 34702450 DOI: 10.1016/j.carbpol.2021.118620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
The dendrites is deemed to be one of the most crucial problems for lithium-ion batteries because it hampers their safety and cycling performance severely. Herein, a cellulose acetate-based separator with uniformly distributed nanopores was engineered and successfully prepared through a simple one-step process. The controlled nanopores promoted uniform transmission of ions and the cellulose acetate backbone inhibited the transference of anions, and prevented large-scale accumulation of lithium ions, thereby restricting the nucleation and growth of dendrites. The 3D-networked separator exhibited capacity retention of 78.6% after 900 cycles at 1C, with the breaking elongation and the strength increased by 620% and 28.4%, respectively, which originated from the porosity controlling of the nanofiber inter-bridging. The nanopore-assembled structure of 3D-hierarchy with MOFs provided the channels for the lithium ions transference through the separator and hence tackled the major challenge of mechanical vulnerability and electrochemical instability, which have never been reported before. Therefore, the developed strategy may offer a powerful and effective alternative for conventional approach of occurring dendrites post-treatments for higher ionic conductivity.
Collapse
Affiliation(s)
- Leixin Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongqin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenyang Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zechang Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW This review describes the latest advances in cell therapy, biomaterials and 3D bioprinting for the treatment of cardiovascular disease. RECENT FINDINGS Cell therapies offer the greatest benefit for patients suffering from chronic ischemic and nonischemic cardiomyopathy. Rather than replacing lost cardiomyocytes, the effects of most cell therapies are mediated by paracrine signalling, mainly through the induction of angiogenesis and immunomodulation. Cell preconditioning, or genetic modifications are being studied to improve the outcomes. Biomaterials offer stand-alone benefits such as bioactive cues for cell survival, proliferation and differentiation, induction of vascularization or prevention of further cardiomyocyte death. They also provide mechanical support or electroconductivity, and can be used to deliver cells, growth factors or drugs to the injured site. Apart from classical biomaterial manufacturing techniques, 3D bioprinting offers greater spatial control over biomaterial deposition and higher resolution of the details, including hollow vessel-like structures. SUMMARY Cell therapy induces mainly angiogenesis and immunomodulation. The ability to induce direct cardiomyocyte regeneration to replace the lost cardiomyocytes is, however, still missing until embryonic or induced pluripotent stem cell use becomes available. Cell therapy would benefit from combinatorial use with biomaterials, as these can prolong cell retention and survival, offer additional mechanical support and provide inherent bioactive cues. Biomaterials can also be used to deliver growth factors, drugs, and other molecules. 3D bioprinting is a high-resolution technique that has great potential in cardiac therapy.
Collapse
|
56
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
57
|
Ul Haq A, Carotenuto F, Di Nardo P, Francini R, Prosposito P, Pescosolido F, De Matteis F. Extrinsically Conductive Nanomaterials for Cardiac Tissue Engineering Applications. MICROMACHINES 2021; 12:914. [PMID: 34442536 PMCID: PMC8402139 DOI: 10.3390/mi12080914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.
Collapse
Affiliation(s)
- Arsalan Ul Haq
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Paolo Di Nardo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- L.L. Levshin Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Roberto Francini
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Paolo Prosposito
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesca Pescosolido
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Fabio De Matteis
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|