51
|
Dar MJ, McElroy CA, Khan MI, Satoskar AR, Khan GM. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv 2019; 17:97-110. [PMID: 31786952 DOI: 10.1080/17425247.2020.1700227] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: To test the hypothesis that miltefosine (MTF)-polyphenol co-loaded second-generation nano-transfersomes (SGNTs) can be an effective approach for the topical treatment of cutaneous leishmaniasis (CL).Methods: The co-loaded SGNTs with various MTF-polyphenol combinations were developed, evaluated and compared for the entrapment efficiency, vesicle size, deformability index, ex-vivo permeation, cytotoxicity, and anti-leishmanial potential, using both in-vitro and in-vivo models.Results: The co-loaded SGNTs were spherical in shape, with an average size of 119 ± 1.5 nm and a high entrapment efficiency of 73.7 ± 3.7%. The ex-vivo study displayed a 3.2-fold higher permeation of MTF when entrapped in co-loaded SGNTs, whereas cytotoxicity potential of co-loaded SGNTs was 43.2% higher than the MTF solution. A synergistic interaction was observed between MTF and apigenin (APG) among all polyphenols and an 8.0-fold lower IC50 was found against amastigotes of DsRed Leishmania mexicana, compared with the plain MTF solution. Moreover, the in-vivo studies displayed a 9.5-fold reduced parasitic burden in the L. mexicana infected BALB/c mice treated with MTF-APG co-loaded SGNTs gel.Conclusions: The potential of MTF-APG co-loaded SGNTs topical formulation is established for the first time as an effective drug delivery strategy against CL.
Collapse
Affiliation(s)
- M Junaid Dar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Craig A McElroy
- Medicinal Chemistry and Pharmacognosy Division, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Muhammad Ijaz Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
52
|
Lim AW, Ng PY, Chieng N, Ng SF. Moringa oleifera leaf extract–loaded phytophospholipid complex for potential application as wound dressing. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
53
|
Kateh Shamshiri M, Momtazi-Borojeni AA, Khodabandeh Shahraky M, Rahimi F. Lecithin soybean phospholipid nano-transfersomes as potential carriers for transdermal delivery of the human growth hormone. J Cell Biochem 2019; 120:9023-9033. [PMID: 30506803 DOI: 10.1002/jcb.28176] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
Pharmaceutical molecules such as peptides and proteins are usually injected into the body. Numerous efforts have been made to find new noninvasive ways to administer these peptides. In this study, highly flexible vesicles (transfersomes [TFs]) were designed as a new modern transdermal drug delivery system for systemic drug administration through the skin, which had also been evaluated in vitro. In this study, two growth hormone-loaded TF formulations were prepared, using soybean lecithin and two different surfactants; F1 _sodium deoxycholate and F 2 _sodium lauryl sulfate. Thereafter, the amount of skin penetration by the two formulas was assessed using the Franz diffusion cell system. TF formulations were evaluated for size, zeta potential and in vitro skin penetration across the rat skin. Results indicated that vesicle formulations were stable for 4 weeks and their mean sizes were 241.33 ± 17 and 171 ± 12.12 nm in the F 1 and F 2 formulation, respectively. After application to rat skin, transport of the human growth hormone (hGH) released from the TF formulations was found to be higher than that of the hGH alone. Maximum amounts of transdermal hormone delivery were estimated to be 489.54 ± 8.301 and 248.46 ± 4.019 ng·cm-2 , for F 1 and F 2 , respectively. The results demonstrate the capability of the TF-containing growth hormone in transdermal delivery and superiority of the F 1 to F 2 TFs.
Collapse
Affiliation(s)
- Maryam Kateh Shamshiri
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amir Abbas Momtazi-Borojeni
- Division of Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Khodabandeh Shahraky
- Division of Industrial and Environmental Biotechnology (IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Rahimi
- Division of Industrial and Environmental Biotechnology (IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
54
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019; 20:181. [PMID: 31049748 DOI: 10.1208/s12249-019-1353-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
Resveratrol (RES) is a potent antioxidant used for the management of several central nervous system diseases. RES bioavailability is less than 1 owing to its low solubility and extensive intestinal and hepatic metabolism. The aim of the study was to enhance RES bioavailability through developing intranasal transferosomal mucoadhesive gel. Reverse evaporation-vortexing sonication method was employed to prepare RES-loaded transferosomes. Transferosomes were developed via 34 definitive screening design, using soya lecithin, permeation enhancers, and surfactants. The optimized formula displayed spherical shape with vesicle size of 83.79 ± 2.54 nm and entrapment efficiency (EE%) of 72.58 ± 4.51%. Mucoadhesive gels were prepared and evaluated, then optimized RES transferosomes were incorporated into the selected gel and characterized using FTIR spectroscopy, in vitro release, and ex vivo permeation study. Histopathological examination of nasal mucosa and in vivo pharmacokinetic study were conducted. In vitro drug release from transferosomal gel was 65.87 ± 2.12% and ex vivo permeation was 75.95 ± 3.19%. Histopathological study confirmed the safety of the optimized formula. The Cmax of RES in the optimized RES trans-gel was 2.15 times higher than the oral RES suspension and AUC(0-∞) increased by 22.5 times. The optimized RES trans-gel developed intranasal safety and bioavailability enhancement through passing hepatic and intestinal metabolism.
Collapse
|
55
|
Wu PS, Li YS, Kuo YC, Tsai SJJ, Lin CC. Preparation and Evaluation of Novel Transfersomes Combined with the Natural Antioxidant Resveratrol. Molecules 2019; 24:molecules24030600. [PMID: 30743989 PMCID: PMC6384602 DOI: 10.3390/molecules24030600] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (tran-3,5,4′-trihydroxystibene, RSV) is a kind of polyphenol which has anti-inflammatory, antioxidant, anti-allergy, and anti-cancer properties, as well as being a scavenger of free radicals and preventing cardiovascular diseases. However, it is quite unstable in light, heat, and other conditions, and decays easily due to environmental factors. For these reasons, this study used a new type of carrier, transfersome, to encapsulate RSV. Transfersome consists of phosphatidyl choline (PC) from a liposomal system and non-ionic edge activators (EA). EA are an important ingredient in the formulation of transfersome; they can enhance the flexibility of the lipid bimolecular membrane of transfersome. Due to its ultradeformability, it also allows drugs to penetrate the skin, even through the stratum corneum. We hope that this new encapsulation technique will improve the stability and enhance the permeability of RSV. Concluding all the tested parameters, the best production condition was 5% PC/EA (3:1) and 5% ethanol in distilled water, with an ultrasonic bath and stirring at 500 rpm, followed by high pressure homogenization. The optimal particle size was 40.13 ± 0.51 nm and the entrapment efficiency (EE) was 59.93 ± 0.99%. The results of antioxidant activity analysis showed that transfersomes were comparable to the RSV group (unencapsulated). During in vitro transdermal delivery analysis, after 6 h, D1-20(W) increased 27.59% by accumulation. Cell viability assay showed that the cytotoxicity of D3-80(W) was reduced by 34.45% compared with the same concentration of RSV. Therefore, we successfully prepared RSV transfersomes and also improved the stability, solubility, and safety of RSV.
Collapse
Affiliation(s)
- Pey-Shiuan Wu
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Yu-Syuan Li
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Yi-Ching Kuo
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Suh-Jen Jane Tsai
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan.
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| |
Collapse
|
56
|
Nair RS, Morris A, Billa N, Leong CO. An Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles for Transdermal Delivery. AAPS PharmSciTech 2019; 20:69. [PMID: 30631984 DOI: 10.1208/s12249-018-1279-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
Collapse
|
57
|
Dar MJ, Din FU, Khan GM. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv 2018; 25:1595-1606. [PMID: 30105918 PMCID: PMC6095017 DOI: 10.1080/10717544.2018.1494222] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Topical drug delivery against cutaneous leishmaniasis (CL) signifies an effective alternate for improving the availability and reducing the toxicity associated with the parenteral administration of conventional sodium stibogluconate (SSG) injection. The basic aim of the study was to develop nano-deformable liposomes (NDLs) for the dermal delivery of SSG against CL. NDLs were formulated by a modified thin film hydration method and optimized via Box–Behnken statistical design. The physicochemical properties of SSG-NDLs were established in terms of vesicle size (195.1 nm), polydispersity index (0.158), zeta potential (−32.8 mV), and entrapment efficiency (35.26%). Moreover, deformability index, in vitro release, and macrophage uptake studies were also accomplished. SSG-NDLs were entrapped within Carbopol gel network for the ease of skin application. The ex vivo skin permeation study revealed that SSG-NDLs gel provided 10-fold higher skin retention towards the deeper skin layers, attained without use of classical permeation enhancers. Moreover, in vivo skin irritation and histopathological studies verified safety of the topically applied formulation. Interestingly, the cytotoxic potential of SSG-NDLs (1.3 mg/ml) was higher than plain SSG (1.65 mg/ml). The anti-leishmanial activity on intramacrophage amastigote model of Leishmania tropica showed that IC50 value of the SSG-NDLs was ∼ fourfold lower than the plain drug solution with marked increase in the selectivity index. The in vivo results displayed higher anti-leishmanial activity by efficiently healing lesion and successfully reducing parasite burden. Concisely, the outcomes indicated that the targeted delivery of SSG could be accomplished by using topically applied NDLs for the effective treatment of CL.
Collapse
Affiliation(s)
- M Junaid Dar
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Fakhar Ud Din
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Gul Majid Khan
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
58
|
Potential of nanoparticulate carriers for improved drug delivery via skin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-00418-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
59
|
Ariamoghaddam AR, Ebrahimi-Hosseinzadeh B, Hatamian-Zarmi A, Sahraeian R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:161-171. [DOI: 10.1016/j.msec.2018.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 02/04/2023]
|
60
|
Hasanpouri A, Lotfipour F, Ghanbarzadeh S, Hamishehkar H. Improvement of dermal delivery of tetracycline using vesicular nanostructures. Res Pharm Sci 2018; 13:385-393. [PMID: 30271440 PMCID: PMC6082035 DOI: 10.4103/1735-5362.236831] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The objective of this investigation was to study the potential use of nanoliposomes and nanotransfersomes in dermal delivery of tetracycline hydrochloride (TC) for acne treatment. Vesicular nanostructures were prepared by thin film hydration method and evaluated for their size, zeta potential, morphology, and entrapment efficiency. Minimal inhibitory concentration values of TC-loaded vesicles were evaluated and compared with TC aqueous solution against Staphylococcus epidermis. In vitro drug release and ex vivo drug permeation through the excised rat skin were performed to assess drug delivery efficiency. Particle size, zeta potential, and entrapment efficiency of prepared nanoliposomes and nanotransfersomes were found to be 75 and 78 nm, 17 and 7 mV, and 45 and 55%, respectively. Antimicrobial analysis indicated that there was no difference between vesicular formulations and aqueous solution of TC. In vitro drug release study indicated that nanoliposomes could release TC 2.6 folds more than nanotransfersomes, and skin permeation study showed that the permeability of TC-loaded nanotransfersomes was 1.6 times higher than nanoliposomes which was also confirmed by fluorescence microscope imaging. These findings concluded that nanoliposomal and especially nanotransfersomal formulations could be proposed as the potential approach for better therapeutic performance of TC against acne.
Collapse
Affiliation(s)
- Azam Hasanpouri
- Biotechnology Research Center, Students’ Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Farzaneh Lotfipour
- Hematology Oncology Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
61
|
Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O'Neill F, Roberts M. Surfactant Effects on Lipid-Based Vesicles Properties. J Pharm Sci 2018; 107:1237-1246. [DOI: 10.1016/j.xphs.2018.01.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/26/2022]
|
62
|
Ahmad A, Abuzinadah MF, Alkreathy HM, Banaganapalli B, Mujeeb M. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies. PLoS One 2018; 13:e0193451. [PMID: 29558494 PMCID: PMC5860693 DOI: 10.1371/journal.pone.0193451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/05/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Ursolic acid (UA) is a promising molecule with anti-inflammatory, analgesic and potential anti-arthritic activity. METHODS This study was undertaken to make formulation and evaluation of Ocimum sanctum L. leaf extract (OLE) loaded nano-structured lipid carriers (OLE-NLCs) for improved transdermal delivery of UA. Different surfactants, solid lipids and liquid lipids were used for the preparation of NLCs. The NLCs were developed using emulsion solvent diffusion and evaporation method. Different physicochemical properties, entrapment efficacy, in vitro release evaluation, and ex vivo permeation studies of the prepared NLCs were carried out. The in vivo anti-arthritic activity of OLE-loaded NLC gel and control gel formulation (OLE free NLC gel) against Complete Freund's Adjuvant (CFA) induced arthritis in wister albino rats was also carried out. RESULTS OLE-NLCs were composed of spherical particles having a mean particle size of ~120 nm, polydispersity index of ~0.162 and zeta potential of ~ -27 mV. The high entrapment efficiency (EE) of UA ~89.56% was attained. The in vitro release study demonstrated a prolonged release of UA from the NLCs up to 12 h. The developed formulation was found to be significantly better with respect to the drug permeation amount with an enhancement ratio of 2.69 as compared with marketed formulation. The in vivo biological activity investigations, studies showed that the newly prepared NLCs formulation of OLE showed excellent anti-arthritic activity and the results were found at par with standard marketed diclofenac gel for its analgesic and anti-arthritic activities. These results were also supported by radiological analysis and molecular docking studies. CONCLUSION The overall results proved that the prepared OLE-NLCs were very effective for the treatment of arthritis and the results were found at par with standard marketed the standard formulation of diclofenac gel.
Collapse
Affiliation(s)
- Aftab Ahmad
- Health Information Technology Department, Jeddah Community College, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammed F. Abuzinadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Huda M. Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohd Mujeeb
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
63
|
El Afify MS, Zein El Dein EA, Elsadek BEM, Mohamed MA, El-Gizawy SA. Development and optimization of a novel drug free nanolipid vesicular system for treatment of osteoarthritis. Drug Dev Ind Pharm 2017; 44:767-777. [DOI: 10.1080/03639045.2017.1411944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohamed S. El Afify
- Pharmaceutical Technology Department, Faculty of Pharmacy, Menoufia University, Shebin el-kom, Egypt
| | - Esmat A. Zein El Dein
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mostafa A. Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin el-kom, Egypt
| | - Sanaa A. El-Gizawy
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
64
|
|
65
|
Wang J, Wei Y, Fei YR, Fang L, Zheng HS, Mu CF, Li FZ, Zhang YS. Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride. Int J Pharm 2017; 533:266-274. [PMID: 28943208 DOI: 10.1016/j.ijpharm.2017.09.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 11/26/2022]
Abstract
Surfactants generally have been used as edge activators of transfersomes. However, surfactants edge activated transfersomes frequently lead to cutaneous irritation, skin lipid loss and other side effects after dermal administration. In this study, mixed monoterpenes edge activated PEGylated transfersomes (MMPTs) were prepared by ethanol injection process with sinomenine hydrochloride as a model drug. The formulation of MMPTs was optimized by an orthogonal design. We investigated skin permeation/deposition characteristics and pharmacokinetics of sinomenine hydrochloride loaded in MMPTs by comparing with liposomes using in vitro skin tests and in vivo cutaneous microdialysis. In in vitro study, the accumulative skin permeated quantity (ASPQ) and skin permeation rate (SPR) of simonenine (SIN) in the optimized MMPTs were prominently higher than that in the other MMPTs. The optimized MMPTs had a SIN ASPQ of over three times of SIN ASPQ in the liposomes and much larger SPR of SIN compared with the latter. In contrast, the drug deposition of the optimized MMPTs in the stratum corneum was much less than that of the conventional liposomes. It was noteworthy that the drug deposition curve in the whole skin (stratum corneum-stripped skin, either) for the optimized MMPTs increased initially and then decreased with an obvious peak deposition amount at 12h, while, a relatively steady curve was observed for the liposomes. In in vivo cutaneous pharmacokinetic study, the steady state concentration (Css) and the area under the curve (AUC0→t) of SIN from the optimized MMPTs was 8.7 and 8.2 folds higher than those from the liposomes, respectively. Moreover, the MRT0-inf of SIN from optimal MMPTs got shorter than that from the liposomes. It can be concluded that the optimized MMPTs obviously enhance the percutaneous absorption of sinomenine.
Collapse
Affiliation(s)
- Juan Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yan Wei
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Ya-Rong Fei
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province (Zhoushan Municipal District Center for Disease Control and Prevention), Zhoushan, 316021, China
| | - Hang-Sheng Zheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Chao-Feng Mu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Fan-Zhu Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yong-Sheng Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| |
Collapse
|
66
|
Chen P, Zhang H, Cheng S, Zhai G, Shen C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
67
|
García-Manrique P, Matos M, Gutiérrez G, Estupiñán OR, Blanco-López MC, Pazos C. Using Factorial Experimental Design To Prepare Size-Tuned Nanovesicles. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo García-Manrique
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - Oscar R. Estupiñán
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - María Carmen Blanco-López
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - Carmen Pazos
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
68
|
Khan NR, Wong TW. Microwave-aided skin drug penetration and retention of 5-fluorouracil-loaded ethosomes. Expert Opin Drug Deliv 2016; 13:1209-19. [DOI: 10.1080/17425247.2016.1193152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nauman Rahim Khan
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
69
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
70
|
Habib BA, AbouGhaly MHH. Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization. Expert Opin Drug Deliv 2016; 13:777-88. [DOI: 10.1517/17425247.2016.1166202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Basant A. Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed H. H. AbouGhaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
71
|
Preparation and statistical optimization of Losartan Potassium loaded nanoparticles using Box Behnken factorial design: Microreactor precipitation. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
72
|
|
73
|
Abdelbary AA, AbouGhaly MH. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm 2015; 485:235-43. [DOI: 10.1016/j.ijpharm.2015.03.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
74
|
Agrawal R, Sandhu SK, Sharma I, Kaur IP. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech 2015; 16:364-74. [PMID: 25319056 DOI: 10.1208/s12249-014-0232-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 10/06/2014] [Indexed: 01/24/2023] Open
Abstract
Curcumin has diverse biological activities including antioxidant and anti-inflammatory activity. However, its clinical use for topical application is limited due to its poor aqueous solubility and thus, minimal cutaneous bioavailability. Elastic vesicles (EVs) of curcumin were prepared to improve its cutaneous bioavailability and to use it for topical anti-inflammatory effect. Ex vivo skin permeation and retention studies were performed to check if incorporation of curcumin into EVs could improve its permeation into and retention in the skin. Evaluation of acute and chronic anti-inflammatory effect was done using xylene-induced acute ear edema in mice and cotton pellet-induced chronic inflammation in rats, respectively. A significant improvement in flux (nine times) across murine skin was observed when aqueous dispersion of curcumin (flux - 0.46 ± 0.02 μg/h/cm(2)) was compared with curcumin-loaded EVs (flux - 4.14 ± 0.04 μg/h/cm(2)). Incorporation of these curcumin-loaded EVs into a hydrophilic ointment base resulted in higher skin retention (51.66%) in contrast to free curcumin ointment (1.64%) and a marketed formulation (VICCO® turmeric skin cream). The developed ointment showed an effect similar (p < 0.05) to the marketed diclofenac sodium ointment (Omni-gel®) in suppression of acute inflammation in mouse; a significant inhibition (28.8% versus 3.91% for free curcumin) of cotton pellet-induced chronic inflammation was also observed. Thus, curcumin-loaded EVs incorporated in hydrophilic ointment is a promising topical anti-inflammatory formulation.
Collapse
|
75
|
Zhao L, Wang Y, Zhai Y, Wang Z, Liu J, Zhai G. Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: Preparation, optimization, and evaluation. Int J Pharm 2014; 477:47-56. [DOI: 10.1016/j.ijpharm.2014.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/31/2023]
|
76
|
Gao Y, Cheng X, Wang Z, Wang J, Gao T, Li P, Kong M, Chen X. Transdermal delivery of 10,11-methylenedioxycamptothecin by hyaluronic acid based nanoemulsion for inhibition of keloid fibroblast. Carbohydr Polym 2014; 112:376-86. [PMID: 25129757 DOI: 10.1016/j.carbpol.2014.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/27/2022]
Abstract
This study designs an alternative transdermal delivery system for 10,11-methylenedioxycamptothecin(MD-CPT) to inhibit keloid. Hyaluronic acid nanoemulsions (HANs) with nano size, negative charge and good stability were prepared as transdermal carriers. The MD-CPT loaded HANs performed desirable skin permeable capacity across human keloid skin and the drug was transferred directly to keloid lesion area. MD-CPT was delivered percutaneously higher than the control group. FITC-HANs could be successfully internalized by keloid fibroblast (KF) and deliver MD-CPT toward nucleus, inhibited the proliferation of KF, while there was no serious toxicity to normal skin fibroblasts. The growth-inhibitory effect was further clarified upon cell cycle regulation, which arrested cells at G1/S and prevented them entry into mitosis. KF gene expression demonstrated plasminogen activator inhibitor-1 (PAI-1) was significantly down-regulated and Smad7 up-regulated, which was beneficial to inhibit keloid. The study demonstrated that as transdermal delivery of MD-CPT by HANs has potential for inhibition of keloid fibroblast.
Collapse
Affiliation(s)
- Yuanyuan Gao
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong, China
| | - Xiaojie Cheng
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong, China
| | - Zhiguo Wang
- Department of Plastic Surgery, The Affiliated Hospital of Medical College Qingdao University, Qingdao 266013, Shandong, China
| | - Juan Wang
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong, China
| | - Tingting Gao
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong, China
| | - Peng Li
- Department of Plastic Surgery, The Affiliated Hospital of Medical College Qingdao University, Qingdao 266013, Shandong, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong, China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
77
|
Chaudhary H, Kohli K, Kumar V. A novel nano-carrier transdermal gel against inflammation. Int J Pharm 2014; 465:175-86. [PMID: 24548719 DOI: 10.1016/j.ijpharm.2014.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/09/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
The objective was to develop a stable, reproducible and patient non-infringing novel transdermal drug delivery system "nano-carrier transdermal gel" (NCTG) in combination of partial dose replacement of diclofenac diethylamine (DDEA) by curcumin (CRM). The drug content of gel was 99.30 and 97.57% for DDEA and CRM. Plasma samples were analyzed by liquid chromatography with triple-quadrupole tandem mass spectrometer (LC-MS/MS). Data were integrated with Analyst™ and analyzed by WinNonlin; stability parameters were analyzed using Tukey-Kramer multiple comparison test. Its average skin irritation scored 0.49 concluded to be non-irritant, safe for human use and in vivo studies revealed significantly greater extent of absorption and highly significant inhibition (%) of carrageenan induced paw edema. The results also demonstrated that encapsulation of drugs in nano-carrier increases its biological activity due to superior skin penetration potential. Hence, a novel once day transdermal gel of nano-carrier (nano-transfersomes; deformable vesicular) is achieved, to increase systemic availability, subsequent reduction in dose and toxicity of DDEA was developed for the treatment of inflammation.
Collapse
Affiliation(s)
| | - Kanchan Kohli
- Faculty of Pharmacy, Jamia Hamdard, New Delhi, India.
| | | |
Collapse
|