51
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|
52
|
Chen W, Shu Q, Fan J. Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. Front Immunol 2020; 11:576929. [PMID: 33193374 PMCID: PMC7658006 DOI: 10.3389/fimmu.2020.576929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence supports the involvement of nervous system in the regulation of immune responses. Group 2 innate lymphoid cells (ILC2), which function as a crucial bridge between innate and adaptive immunity, are present in large numbers in barrier tissues. Neuropeptides and neurotransmitters have been found to participate in the regulation of ILC2, adding a new dimension to neuroimmunity. However, a comprehensive and detailed overview of the mechanisms of neural regulation of ILC2, associated with previous findings and prospects for future research, is still lacking. In this review, we compile existing information that supports neurons as yet poorly understood regulators of ILC2 in the field of lung innate and adaptive immunity, focusing on neural regulation of the interaction between ILC2 and pulmonary immune cells.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
53
|
Campos J, Pacheco R. Involvement of dopaminergic signaling in the cross talk between the renin-angiotensin system and inflammation. Semin Immunopathol 2020; 42:681-696. [PMID: 32997225 PMCID: PMC7526080 DOI: 10.1007/s00281-020-00819-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is a fundamental regulator of blood pressure and has emerged as an important player in the control of inflammatory processes. Accordingly, imbalance on RAS components either systemically or locally might trigger the development of inflammatory disorders by affecting immune cells. At the same time, alterations in the dopaminergic system have been consistently involved in the physiopathology of inflammatory disorders. Accordingly, the interaction between the RAS and the dopaminergic system has been studied in the context of inflammation of the central nervous system (CNS), kidney, and intestine, where they exert antagonistic actions in the regulation of the immune system. In this review, we summarized, integrated, and discussed the cross talk of the dopaminergic system and the RAS in the regulation of inflammatory pathologies, including neurodegenerative disorders, such as Parkinson’s disease. We analyzed the molecular mechanisms underlying the interaction between both systems in the CNS and in systemic pathologies. Moreover, we also analyzed the impact of the commensal microbiota in the regulation of RAS and dopaminergic system and how it is involved in inflammatory disorders. Furthermore, we summarized the therapeutic approaches that have yielded positive results in preclinical or clinical studies regarding the use of drugs targeting the RAS and dopaminergic system for the treatment of inflammatory conditions. Further understanding of the molecular and cellular regulation of the RAS-dopaminergic cross talk should allow the formulation of new therapies consisting of novel drugs and/or repurposing already existing drugs, alone or in combination, for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Javier Campos
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile. .,Universidad San Sebastián, 7510156 Providencia, Santiago, Chile.
| |
Collapse
|
54
|
Nataf S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol 2020; 92:1743-1744. [PMID: 32246784 PMCID: PMC7228370 DOI: 10.1002/jmv.25826] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Hôpital Edouard Herriot, Lyon University Hospital, Lyon, France.,CarMeN Laboratory, INSERM 1060, INRA 1397, INSA, Oullins, France.,Department of Cytology/Histology, Lyon-Est School of Medicine, University Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
55
|
Vidal PM, Pacheco R. The Cross-Talk Between the Dopaminergic and the Immune System Involved in Schizophrenia. Front Pharmacol 2020; 11:394. [PMID: 32296337 PMCID: PMC7137825 DOI: 10.3389/fphar.2020.00394] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine is one of the neurotransmitters whose transmission is altered in a number of neural pathways in the brain of schizophrenic patients. Current evidence indicates that these alterations involve hyperactive dopaminergic transmission in mesolimbic areas, striatum, and hippocampus, whereas hypoactive dopaminergic transmission has been reported in the prefrontal cortex of schizophrenic patients. Consequently, schizophrenia is associated with several cognitive and behavioral alterations. Of note, the immune system has been found to collaborate with the central nervous system in a number of cognitive and behavioral functions, which are dysregulated in schizophrenia. Moreover, emerging evidence has associated schizophrenia and inflammation. Importantly, different lines of evidence have shown dopamine as a major regulator of inflammation. In this regard, dopamine might exert strong regulation in the activity, migration, differentiation, and proliferation of immune cells that have been shown to contribute to cognitive functions, including T-cells, microglial cells, and peripheral monocytes. Thereby, alterations in dopamine levels associated to schizophrenia might affect inflammatory response of immune cells and consequently some behavioral functions, including reference memory, learning, social behavior, and stress resilience. Altogether these findings support the involvement of an active cross-talk between the dopaminergic and immune systems in the physiopathology of schizophrenia. In this review we summarize, integrate, and discuss the current evidence indicating the involvement of an altered dopaminergic regulation of immunity in schizophrenia.
Collapse
Affiliation(s)
- Pia M Vidal
- Department of Basic Science, Biomedical Science Research Lab, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile.,Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
56
|
Barr J, Su Y, Sun X. Wheeze No More: Growing Out of Your Dopaminergic Nerves. Immunity 2020; 51:977-979. [PMID: 31851903 DOI: 10.1016/j.immuni.2019.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this issue of Immunity, Wang et al. identify a developmental transition of neural-immune interactions from postnatal to adult lung. Their findings implicate sympathetic nerve production of dopamine as a contributor to the susceptibility of children to allergen-induced asthmatic responses.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Yujuan Su
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
57
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|