51
|
Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics (Basel) 2022; 12:diagnostics12112644. [PMID: 36359485 PMCID: PMC9689810 DOI: 10.3390/diagnostics12112644] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario.
Collapse
|
52
|
Doraiswami PR, Sarveshwaran V, Swamidason ITJ, Sorna SCD. Jaya-tunicate swarm algorithm based generative adversarial network for COVID-19 prediction with chest computed tomography images. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e7211. [PMID: 35945987 PMCID: PMC9353441 DOI: 10.1002/cpe.7211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
A novel corona virus (COVID-19) has materialized as the respiratory syndrome in recent decades. Chest computed tomography scanning is the significant technology for monitoring and predicting COVID-19. To predict the patients of COVID-19 at early stage poses an open challenge in the research community. Therefore, an effective prediction mechanism named Jaya-tunicate swarm algorithm driven generative adversarial network (Jaya-TSA with GAN) is proposed in this research to find patients of COVID-19 infections. The developed Jaya-TSA is the incorporation of Jaya algorithm with tunicate swarm algorithm (TSA). However, lungs lobs are segmented using Bayesian fuzzy clustering, which effectively find the boundary regions of lung lobes. Based on the extracted features, the process of COVID-19 prediction is accomplished using GAN. The optimal solution is obtained by training GAN using proposed Jaya-TSA with respect to fitness measure. The dimensionality of features is reduced by extracting the optimal features, which enable to increase the speed of training process. Moreover, the developed Jaya-TSA based GAN attained outstanding effectiveness by considering the factors, like, specificity, accuracy, and sensitivity that captured the importance as 0.8857, 0.8727, and 0.85 by varying training data.
Collapse
Affiliation(s)
| | - Velliangiri Sarveshwaran
- Department of Computational IntelligenceSRM Institute of Science and Technology, Kattankulathur CampusChennaiIndia
| | | | | |
Collapse
|
53
|
Naseem MT, Hussain T, Lee CS, Khan MA. Classification and Detection of COVID-19 and Other Chest-Related Diseases Using Transfer Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:7977. [PMID: 36298328 PMCID: PMC9610066 DOI: 10.3390/s22207977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 has infected millions of people worldwide over the past few years. The main technique used for COVID-19 detection is reverse transcription, which is expensive, sensitive, and requires medical expertise. X-ray imaging is an alternative and more accessible technique. This study aimed to improve detection accuracy to create a computer-aided diagnostic tool. Combining other artificial intelligence applications techniques with radiological imaging can help detect different diseases. This study proposes a technique for the automatic detection of COVID-19 and other chest-related diseases using digital chest X-ray images of suspected patients by applying transfer learning (TL) algorithms. For this purpose, two balanced datasets, Dataset-1 and Dataset-2, were created by combining four public databases and collecting images from recently published articles. Dataset-1 consisted of 6000 chest X-ray images with 1500 for each class. Dataset-2 consisted of 7200 images with 1200 for each class. To train and test the model, TL with nine pretrained convolutional neural networks (CNNs) was used with augmentation as a preprocessing method. The network was trained to classify using five classifiers: two-class classifier (normal and COVID-19); three-class classifier (normal, COVID-19, and viral pneumonia), four-class classifier (normal, viral pneumonia, COVID-19, and tuberculosis (Tb)), five-class classifier (normal, bacterial pneumonia, COVID-19, Tb, and pneumothorax), and six-class classifier (normal, bacterial pneumonia, COVID-19, viral pneumonia, Tb, and pneumothorax). For two, three, four, five, and six classes, our model achieved a maximum accuracy of 99.83, 98.11, 97.00, 94.66, and 87.29%, respectively.
Collapse
Affiliation(s)
- Muhammad Tahir Naseem
- Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Riphah School of Computing & Applied Sciences (RSCI), Riphah International University, Lahore 55150, Pakistan
| | - Tajmal Hussain
- Riphah School of Computing & Applied Sciences (RSCI), Riphah International University, Lahore 55150, Pakistan
| | - Chan-Su Lee
- Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Muhammad Adnan Khan
- Riphah School of Computing & Applied Sciences (RSCI), Riphah International University, Lahore 55150, Pakistan
| |
Collapse
|
54
|
Tsimenidis S, Vrochidou E, Papakostas GA. Omics Data and Data Representations for Deep Learning-Based Predictive Modeling. Int J Mol Sci 2022; 23:12272. [PMID: 36293133 PMCID: PMC9603455 DOI: 10.3390/ijms232012272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Medical discoveries mainly depend on the capability to process and analyze biological datasets, which inundate the scientific community and are still expanding as the cost of next-generation sequencing technologies is decreasing. Deep learning (DL) is a viable method to exploit this massive data stream since it has advanced quickly with there being successive innovations. However, an obstacle to scientific progress emerges: the difficulty of applying DL to biology, and this because both fields are evolving at a breakneck pace, thus making it hard for an individual to occupy the front lines of both of them. This paper aims to bridge the gap and help computer scientists bring their valuable expertise into the life sciences. This work provides an overview of the most common types of biological data and data representations that are used to train DL models, with additional information on the models themselves and the various tasks that are being tackled. This is the essential information a DL expert with no background in biology needs in order to participate in DL-based research projects in biomedicine, biotechnology, and drug discovery. Alternatively, this study could be also useful to researchers in biology to understand and utilize the power of DL to gain better insights into and extract important information from the omics data.
Collapse
Affiliation(s)
| | | | - George A. Papakostas
- MLV Research Group, Department of Computer Science, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
55
|
Sinwar D, Dhaka VS, Tesfaye BA, Raghuwanshi G, Kumar A, Maakar SK, Agrawal S. Artificial Intelligence and Deep Learning Assisted Rapid Diagnosis of COVID-19 from Chest Radiographical Images: A Survey. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1306664. [PMID: 36304775 PMCID: PMC9581633 DOI: 10.1155/2022/1306664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023]
Abstract
Artificial Intelligence (AI) has been applied successfully in many real-life domains for solving complex problems. With the invention of Machine Learning (ML) paradigms, it becomes convenient for researchers to predict the outcome based on past data. Nowadays, ML is acting as the biggest weapon against the COVID-19 pandemic by detecting symptomatic cases at an early stage and warning people about its futuristic effects. It is observed that COVID-19 has blown out globally so much in a short period because of the shortage of testing facilities and delays in test reports. To address this challenge, AI can be effectively applied to produce fast as well as cost-effective solutions. Plenty of researchers come up with AI-based solutions for preliminary diagnosis using chest CT Images, respiratory sound analysis, voice analysis of symptomatic persons with asymptomatic ones, and so forth. Some AI-based applications claim good accuracy in predicting the chances of being COVID-19-positive. Within a short period, plenty of research work is published regarding the identification of COVID-19. This paper has carefully examined and presented a comprehensive survey of more than 110 papers that came from various reputed sources, that is, Springer, IEEE, Elsevier, MDPI, arXiv, and medRxiv. Most of the papers selected for this survey presented candid work to detect and classify COVID-19, using deep-learning-based models from chest X-Rays and CT scan images. We hope that this survey covers most of the work and provides insights to the research community in proposing efficient as well as accurate solutions for fighting the pandemic.
Collapse
Affiliation(s)
- Deepak Sinwar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Vijaypal Singh Dhaka
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Biniyam Alemu Tesfaye
- Department of Computer Science, College of Informatics, Bule Hora University, Bule Hora, Ethiopia
| | - Ghanshyam Raghuwanshi
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Ashish Kumar
- Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, India
| | - Sunil Kr. Maakar
- School of Computing Science & Engineering, Galgotias University, Greater Noida, India
| | - Sanjay Agrawal
- Department of Electrical Engineering, Rajkiya Engineering College, Akbarpur, Ambedkar Nagar, India
| |
Collapse
|
56
|
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2022; 43:486-510. [PMID: 34336141 PMCID: PMC8312058 DOI: 10.1016/j.irbm.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Background and objective In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field. Methods The main focus of this study is the recent developments of classification and segmentation approaches to image-based COVID-19 detection. The study reviews 140 research papers published in different academic research databases. These papers have been screened and filtered based on specified criteria, to acquire insights prudent to image-based COVID-19 detection. Results The methods discussed in this review include different types of imaging modality, predominantly X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This review seeks to categorize and discuss the different deep learning and machine learning architectures employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep learning and machine learning architectures that can be proposed for better results towards COVID-19 detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial Intelligence-based COVID-19 detection has been discussed as well. Conclusion This work concludes by stipulating the technical and non-technical challenges faced by researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence techniques.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - G S Kathiresan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
57
|
Nguyen Duc T, Tran CM, Bach NG, Tan PX, Kamioka E. Repetition-Based Approach for Task Adaptation in Imitation Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:6959. [PMID: 36146306 PMCID: PMC9502931 DOI: 10.3390/s22186959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Transfer learning is an effective approach for adapting an autonomous agent to a new target task by transferring knowledge learned from the previously learned source task. The major problem with traditional transfer learning is that it only focuses on optimizing learning performance on the target task. Thus, the performance on the target task may be improved in exchange for the deterioration of the source task's performance, resulting in an agent that is not able to revisit the earlier task. Therefore, transfer learning methods are still far from being comparable with the learning capability of humans, as humans can perform well on both source and new target tasks. In order to address this limitation, a task adaptation method for imitation learning is proposed in this paper. Being inspired by the idea of repetition learning in neuroscience, the proposed adaptation method enables the agent to repeatedly review the learned knowledge of the source task, while learning the new knowledge of the target task. This ensures that the learning performance on the target task is high, while the deterioration of the learning performance on the source task is small. A comprehensive evaluation over several simulated tasks with varying difficulty levels shows that the proposed method can provide high and consistent performance on both source and target tasks, outperforming existing transfer learning methods.
Collapse
Affiliation(s)
- Tho Nguyen Duc
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Chanh Minh Tran
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Nguyen Gia Bach
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Phan Xuan Tan
- Department of Information and Communications Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Eiji Kamioka
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| |
Collapse
|
58
|
A Novel Method for COVID-19 Detection Based on DCNNs and Hierarchical Structure. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2484435. [PMID: 36092785 PMCID: PMC9453086 DOI: 10.1155/2022/2484435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
The worldwide outbreak of the new coronavirus disease (COVID-19) has been declared a pandemic by the World Health Organization (WHO). It has a devastating impact on daily life, public health, and global economy. Due to the highly infectiousness, it is urgent to early screening of suspected cases quickly and accurately. Chest X-ray medical image, as a diagnostic basis for COVID-19, arouses attention from medical engineering. However, due to small lesion difference and lack of training data, the accuracy of detection model is insufficient. In this work, a transfer learning strategy is introduced to hierarchical structure to enhance high-level features of deep convolutional neural networks. The proposed framework consisting of asymmetric pretrained DCNNs with attention networks integrates various information into a wider architecture to learn more discriminative and complementary features. Furthermore, a novel cross-entropy loss function with a penalty term weakens misclassification. Extensive experiments are implemented on the COVID-19 dataset. Compared with the state-of-the-arts, the effectiveness and high performance of the proposed method are demonstrated.
Collapse
|
59
|
Smadi AA, Abugabah A, Al-Smadi AM, Almotairi S. SEL-COVIDNET: An intelligent application for the diagnosis of COVID-19 from chest X-rays and CT-scans. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101059. [PMID: 36033909 PMCID: PMC9398554 DOI: 10.1016/j.imu.2022.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
COVID-19 detection from medical imaging is a difficult challenge that has piqued the interest of experts worldwide. Chest X-rays and computed tomography (CT) scanning are the essential imaging modalities for diagnosing COVID-19. All researchers focus their efforts on developing viable methods and rapid treatment procedures for this pandemic. Fast and accurate automated detection approaches have been devised to alleviate the need for medical professionals. Deep Learning (DL) technologies have successfully recognized COVID-19 situations. This paper proposes a developed set of nine deep learning models for diagnosing COVID-19 based on transfer learning and implementation in a novel architecture (SEL-COVIDNET). We include a global average pooling layer, flattening, and two dense layers that are fully connected. The model’s effectiveness is evaluated using balanced and unbalanced COVID-19 radiography datasets. After that, our model’s performance is analyzed using six evaluation measures: accuracy, sensitivity, specificity, precision, F1-score, and Matthew’s correlation coefficient (MCC). Experiments demonstrated that the proposed SEL-COVIDNET with tuned DenseNet121, InceptionResNetV2, and MobileNetV3Large models outperformed the results of comparative SOTA for multi-class classification (COVID-19 vs. No-finding vs. Pneumonia) in terms of accuracy (98.52%), specificity (98.5%), sensitivity (98.5%), precision (98.7%), F1-score (98.7%), and MCC (97.5%). For the COVID-19 vs. No-finding classification, our method had an accuracy of 99.77%, a specificity of 99.85%, a sensitivity of 99.85%, a precision of 99.55%, an F1-score of 99.7%, and an MCC of 99.4%. The proposed model offers an accurate approach for detecting COVID-19 patients, which aids in the containment of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Al Smadi
- School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xian, 710071, China.,College of Technological Innovation, Zayed University, Abu Dhabi Campus, UAE
| | - Ahed Abugabah
- College of Technological Innovation, Zayed University, Abu Dhabi Campus, UAE
| | - Ahmad Mohammad Al-Smadi
- Department of Computer Science, Al-Balqa Applied University, Ajloun University College, Jordan
| | - Sultan Almotairi
- Faculty of Community College, Majmaah University, Al Majma'ah, Saudi Arabia
| |
Collapse
|
60
|
Selvadass S, Paul JJ, Bella Mary I T, Packiavathy ISV, Gautam S. IoT-Enabled smart mask to detect COVID19 outbreak. HEALTH AND TECHNOLOGY 2022; 12:1025-1036. [PMID: 36000088 PMCID: PMC9388365 DOI: 10.1007/s12553-022-00695-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Introduction Internet of Things (IoT) has dominated various sectors over human effort with its liberal dimensions of innovations. Shielding various utilizations in terms of extensity, IoT integrated with the cloud has obtained a far-reaching spectrum. Backgrounds Nevertheless, the SARS-CoV-2 has become an imperil, at the present moment causing remarkable demands on health technologies across the globe and gravely snarling the entire world populace. Whilst, the front-runners are striving enormously to uncover this virus, in the event of medications and evolving vaccines, it is also imperative to explore the existing systems dealing with medical emergence, mitigating its spread, and supremely the planning for thwarting this virus. The extant passive face masks provide effective and feasible protection by screening all the air particles entering the nasal passage. Methodology This paper aims to enucleate a new "smart mask" paradigm for telehealth. As the vital health parameters like temperature, respiratory rate(RR), and heart rate(HR) are being easily affected by this deadly virus, this paper envisions a wearable mask equipped with an active sensor (LM35 temperature sensor) that would continuously monitor these health parameters of the person wearing the mask and provide real-time analysis of the data through the cloud. Result This proposed methodology also incorporates a vigilant system that would alert the person, if the necessary physical distance is not maintained. Besides, this application provides a person with a detailed record of his health, sending doctors and hospitals for teleconsultation. Conclusion Experimental results from a functional prototype have proved it a constructive low-cost system.
Collapse
Affiliation(s)
- Salomi Selvadass
- Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu India
| | - J. John Paul
- Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu India
| | | | | | - Sneha Gautam
- Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu India
| |
Collapse
|
61
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
62
|
An Effective Deep Learning Model for Health Monitoring and Detection of COVID-19 Infected Patients: An End-to-End Solution. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7126259. [PMID: 35965776 PMCID: PMC9372529 DOI: 10.1155/2022/7126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The COVID-19 infection is the greatest danger to humankind right now because of the devastation it causes to the lives of its victims. It is important that infected people be tested in a timely manner in order to halt the spread of the disease. Physical approaches are time-consuming, expensive, and tedious. As a result, there is a pressing need for a cost-effective and efficient automated tool. A convolutional neural network is presented in this paper for analysing X-ray pictures of patients' chests. For the analysis of COVID-19 infections, this study investigates the most suitable pretrained deep learning models, which can be integrated with mobile or online apps and support the mobility of diagnostic instruments in the form of a portable tool. Patients can use the smartphone app to find the nearest healthcare testing facility, book an appointment, and get instantaneous results, while healthcare professionals can keep track of the details thanks to the web and mobile applications built for this study. Medical practitioners can apply the COVID-19 detection model for chest frontal X-ray pictures with ease. A user-friendly interface is created to make our end-to-end solution paradigm work. Based on the data, it appears that the model could be useful in the real world.
Collapse
|
63
|
Uçar M. Automatic segmentation of COVID-19 from computed tomography images using modified U-Net model-based majority voting approach. Neural Comput Appl 2022; 34:21927-21938. [PMID: 35968248 PMCID: PMC9362439 DOI: 10.1007/s00521-022-07653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022]
Abstract
The coronavirus disease (COVID-19) is an important public health problem that has spread rapidly around the world and has caused the death of millions of people. Therefore, studies to determine the factors affecting the disease, to perform preventive actions and to find an effective treatment are at the forefront. In this study, a deep learning and segmentation-based approach is proposed for the detection of COVID-19 disease from computed tomography images. The proposed model was created by modifying the encoder part of the U-Net segmentation model. In the encoder part, VGG16, ResNet101, DenseNet121, InceptionV3 and EfficientNetB5 deep learning models were used, respectively. Then, the results obtained with each modified U-Net model were combined with the majority vote principle and a final result was reached. As a result of the experimental tests, the proposed model obtained 85.03% Dice score, 89.13% sensitivity and 99.38% specificity on the COVID-19 segmentation test dataset. The results obtained in the study show that the proposed model will especially benefit clinicians in terms of time and cost.
Collapse
Affiliation(s)
- Murat Uçar
- Department of Management Information Systems, Faculty of Business and Management Sciences, İskenderun Technical University, 31200 İskenderun, Hatay Turkey
| |
Collapse
|
64
|
A Soft-Voting Ensemble Classifier for Detecting Patients Affected by COVID-19. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
COVID-19 is an ongoing global pandemic of coronavirus disease 2019, which may cause severe acute respiratory syndrome. This disease highlighted the limitations of health systems worldwide regarding managing the pandemic. In particular, the lack of diagnostic tests that can quickly and reliably detect infected patients has contributed to the spread of the virus. Reverse Transcriptase—Polymerase Chain Reaction (RT-PCR) and antigen tests, which are the main diagnostic tests for COVID-19, showed their limitations during the pandemic. In fact, RT-PCR requires several hours to provide a diagnosis and is not properly accurate, thus generating a high number of false negatives. Unlike RT-PCR, antigen tests provide rapid diagnosis but are less accurate in detecting COVID-19 positive patients. Medical imaging is an alternative diagnostic test for COVID-19. In particular, chest computed tomography allows detecting lung infections related to the disease with high accuracy. However, visual analysis of a chest scan generated by computed tomography is a demanding activity for radiologists, making widespread use of this test unfeasible. Therefore, it is essential to lighten their work with automated tools able to provide accurate diagnosis in a short time. To deal with this challenge, in this work, an approach based on 3D Inception CNNs is proposed. Specifically, 3D Inception-V1 and Inception-V3 models have been built and compared. Then, soft-voting ensemble classifier models have been separately built on these models to boost the performance. As for the individual models, results showed that Inception-V1 outperformed Inception-V3 according to different measures. As for the ensemble classifier models, the outcome of experiments pointed out that the adopted voting strategy boosted the performance of individual models. The best results have been achieved enforcing soft voting on Inception-V1 models.
Collapse
|
65
|
A Sustainable Deep Learning-Based Framework for Automated Segmentation of COVID-19 Infected Regions: Using U-Net with an Attention Mechanism and Boundary Loss Function. ELECTRONICS 2022. [DOI: 10.3390/electronics11152296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
COVID-19 has been spreading rapidly, affecting billions of people globally, with significant public health impacts. Biomedical imaging, such as computed tomography (CT), has significant potential as a possible substitute for the screening process. Because of this, automatic segmentation of images is highly desirable as clinical decision support for an extensive evaluation of disease control and monitoring. It is a dynamic tool and performs a central role in precise or accurate segmentation of infected areas or regions in CT scans, thus helping in screening, diagnosing, and disease monitoring. For this purpose, we introduced a deep learning framework for automated segmentation of COVID-19 infected lesions/regions in lung CT scan images. Specifically, we adopted a segmentation model, i.e., U-Net, and utilized an attention mechanism to enhance the framework’s ability for the segmentation of virus-infected regions. Since all of the features extracted or obtained from the encoders are not valuable for segmentation; thus, we applied the U-Net architecture with a mechanism of attention for a better representation of the features. Moreover, we applied a boundary loss function to deal with small and unbalanced lesion segmentation’s. Using different public CT scan image data sets, we validated the framework’s effectiveness in contrast with other segmentation techniques. The experimental outcomes showed the improved performance of the presented framework for the automated segmentation of lungs and infected areas in CT scan images. We also considered both boundary loss and weighted binary cross-entropy dice loss function. The overall dice accuracies of the framework are 0.93 and 0.76 for lungs and COVID-19 infected areas/regions.
Collapse
|
66
|
Non-iterative learning machine for identifying CoViD19 using chest X-ray images. Sci Rep 2022; 12:11880. [PMID: 35831332 PMCID: PMC9279431 DOI: 10.1038/s41598-022-15268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
CoViD19 is a novel disease which has created panic worldwide by infecting millions of people around the world. The last significant variant of this virus, called as omicron, contributed to majority of cases in the third wave across globe. Though lesser in severity as compared to its predecessor, the delta variant, this mutation has shown higher communicable rate. This novel virus with symptoms of pneumonia is dangerous as it is communicable and hence, has engulfed entire world in a very short span of time. With the help of machine learning techniques, entire process of detection can be automated so that direct contacts can be avoided. Therefore, in this paper, experimentation is performed on CoViD19 chest X-ray images using higher order statistics with iterative and non-iterative models. Higher order statistics provide a way of analyzing the disturbances in the chest X-ray images. The results obtained are quite good with 96.64% accuracy using a non-iterative model. For fast testing of the patients, non-iterative model is preferred because it has advantage over iterative model in terms of speed. Comparison with some of the available state-of-the-art methods and some iterative methods proves efficacy of the work.
Collapse
|
67
|
COVIDetection: deep convolutional neural networks-based automatic detection of COVID-19 with chest x-ray images. RESEARCH ON BIOMEDICAL ENGINEERING 2022. [PMCID: PMC9244037 DOI: 10.1007/s42600-022-00230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose Until recently, COVID-19 was considered a highly contagious air borne infection that leads to fatal pneumonia and other health hazardous infections. The new coronavirus, or type SARS-COV-2, is responsible for COVID-19 and has demonstrated the deadly nature of the respiratory disease that threatens many people worldwide. A clinical study found that a person infected with COVID-19 can experience dry cough, muscle pain, headache, fever, sore throat, and mild to moderate respiratory illness. At the same time, it has a negative effect on the lungs if there is a viral infection. Thus, the lungs can become visible internal organs for diagnosing the severity of COVID-19 infection using chest X-rays and CT scans. Despite the long testing time, RT-PCR is a proven testing method for detecting coronavirus infection. Sometimes there are more false positives and false negatives than the desired percentage. The concept of artificial neural network (ANN) is inspired by the biological neural networks which consists of inter-connected units called artificial neurons. Convolutional neural network (CNN) which is a variant of multilayer perceptron that belongs to a class of feedforward ANN is widely used for various applications due to its enhanced accuracy. Method Traditional RT-PCR methodology supports for accurate clinical diagnosis, screening for COVID-19 using an X-ray or CT scan of the human lung that can be considered. In this work, a new multi-image augmentation system is proposed based on CNN to detect COVID-19 in the chest using chest X-rays or CT images of people suspected of having the coronavirus. Results The optimal selection of slices/features has led to obtain best results for accuracy and loss. In addition to that the parameter selection reflected optimal true positive rate and false positive rates. The results look promising even with the small publicly available data set in a short period of time. Conclusion This work presented a model that found to detect positive cases of COVID-19 from chest X-rays using an in-depth training model. The system demonstrates a significant performance improvement over the publicly maintained COVID-19 positive X-ray classification kit, the same dataset of pneumonia chest X-rays. The results look promising even with the small publicly available data set in terms of accuracy and loss as well as with enhanced true positive results.
Collapse
|
68
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
69
|
Durga R, Poovammal E. FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction. Front Public Health 2022; 10:892499. [PMID: 35784262 PMCID: PMC9247602 DOI: 10.3389/fpubh.2022.892499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
With the SARS-CoV-2's exponential growth, intelligent and constructive practice is required to diagnose the COVID-19. The rapid spread of the virus and the shortage of reliable testing models are considered major issues in detecting COVID-19. This problem remains the peak burden for clinicians. With the advent of artificial intelligence (AI) in image processing, the burden of diagnosing the COVID-19 cases has been reduced to acceptable thresholds. But traditional AI techniques often require centralized data storage and training for the predictive model development which increases the computational complexity. The real-world challenge is to exchange data globally across hospitals while also taking into account of the organizations' privacy concerns. Collaborative model development and privacy protection are critical considerations while training a global deep learning model. To address these challenges, this paper proposes a novel framework based on blockchain and the federated learning model. The federated learning model takes care of reduced complexity, and blockchain helps in distributed data with privacy maintained. More precisely, the proposed federated learning ensembled deep five learning blockchain model (FLED-Block) framework collects the data from the different medical healthcare centers, develops the model with the hybrid capsule learning network, and performs the prediction accurately, while preserving the privacy and shares among authorized persons. Extensive experimentation has been carried out using the lung CT images and compared the performance of the proposed model with the existing VGG-16 and 19, Alexnets, Resnets-50 and 100, Inception V3, Densenets-121, 119, and 150, Mobilenets, SegCaps in terms of accuracy (98.2%), precision (97.3%), recall (96.5%), specificity (33.5%), and F1-score (97%) in predicting the COVID-19 with effectively preserving the privacy of the data among the heterogeneous users.
Collapse
|
70
|
Yang J, Soltan AAS, Clifton DA. Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening. NPJ Digit Med 2022; 5:69. [PMID: 35672368 PMCID: PMC9174159 DOI: 10.1038/s41746-022-00614-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
As patient health information is highly regulated due to privacy concerns, most machine learning (ML)-based healthcare studies are unable to test on external patient cohorts, resulting in a gap between locally reported model performance and cross-site generalizability. Different approaches have been introduced for developing models across multiple clinical sites, however less attention has been given to adopting ready-made models in new settings. We introduce three methods to do this-(1) applying a ready-made model "as-is" (2); readjusting the decision threshold on the model's output using site-specific data and (3); finetuning the model using site-specific data via transfer learning. Using a case study of COVID-19 diagnosis across four NHS Hospital Trusts, we show that all methods achieve clinically-effective performances (NPV > 0.959), with transfer learning achieving the best results (mean AUROCs between 0.870 and 0.925). Our models demonstrate that site-specific customization improves predictive performance when compared to other ready-made approaches.
Collapse
Affiliation(s)
- Jenny Yang
- Institute of Biomedical Engineering, Dept. Engineering Science, University of Oxford, Oxford, UK.
| | - Andrew A S Soltan
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - David A Clifton
- Institute of Biomedical Engineering, Dept. Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
71
|
Avola D, Bacciu A, Cinque L, Fagioli A, Marini MR, Taiello R. Study on transfer learning capabilities for pneumonia classification in chest-x-rays images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106833. [PMID: 35537296 PMCID: PMC9033299 DOI: 10.1016/j.cmpb.2022.106833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND over the last year, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants have highlighted the importance of screening tools with high diagnostic accuracy for new illnesses such as COVID-19. In that regard, deep learning approaches have proven as effective solutions for pneumonia classification, especially when considering chest-x-rays images. However, this lung infection can also be caused by other viral, bacterial or fungi pathogens. Consequently, efforts are being poured toward distinguishing the infection source to help clinicians to diagnose the correct disease origin. Following this tendency, this study further explores the effectiveness of established neural network architectures on the pneumonia classification task through the transfer learning paradigm. METHODOLOGY to present a comprehensive comparison, 12 well-known ImageNet pre-trained models were fine-tuned and used to discriminate among chest-x-rays of healthy people, and those showing pneumonia symptoms derived from either a viral (i.e., generic or SARS-CoV-2) or bacterial source. Furthermore, since a common public collection distinguishing between such categories is currently not available, two distinct datasets of chest-x-rays images, describing the aforementioned sources, were combined and employed to evaluate the various architectures. RESULTS the experiments were performed using a total of 6330 images split between train, validation, and test sets. For all models, standard classification metrics were computed (e.g., precision, f1-score), and most architectures obtained significant performances, reaching, among the others, up to 84.46% average f1-score when discriminating the four identified classes. Moreover, execution times, areas under the receiver operating characteristic (AUROC), confusion matrices, activation maps computed via the Grad-CAM algorithm, and additional experiments to assess the robustness of each model using only 50%, 20%, and 10% of the training set were also reported to present an informed discussion on the networks classifications. CONCLUSION this paper examines the effectiveness of well-known architectures on a joint collection of chest-x-rays presenting pneumonia cases derived from either viral or bacterial sources, with particular attention to SARS-CoV-2 contagions for viral pathogens; demonstrating that existing architectures can effectively diagnose pneumonia sources and suggesting that the transfer learning paradigm could be a crucial asset in diagnosing future unknown illnesses.
Collapse
Affiliation(s)
- Danilo Avola
- Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy
| | - Andrea Bacciu
- Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy
| | - Luigi Cinque
- Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy
| | - Alessio Fagioli
- Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy.
| | - Marco Raoul Marini
- Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy
| | - Riccardo Taiello
- Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy
| |
Collapse
|
72
|
Islam MR, Nahiduzzaman M. Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach. EXPERT SYSTEMS WITH APPLICATIONS 2022; 195:116554. [PMID: 35136286 PMCID: PMC8813716 DOI: 10.1016/j.eswa.2022.116554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
Recently the most infectious disease is the novel Coronavirus disease (COVID 19) creates a devastating effect on public health in more than 200 countries in the world. Since the detection of COVID19 using reverse transcription-polymerase chain reaction (RT-PCR) is time-consuming and error-prone, the alternative solution of detection is Computed Tomography (CT) images. In this paper, Contrast Limited Histogram Equalization (CLAHE) was applied to CT images as a preprocessing step for enhancing the quality of the images. After that, we developed a novel Convolutional Neural Network (CNN) model that extracted 100 prominent features from a total of 2482 CT scan images. These extracted features were then deployed to various machine learning algorithms - Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), and Random Forest (RF). Finally, we proposed an ensemble model for the COVID19 CT image classification. We also showed various performance comparisons with the state-of-art methods. Our proposed model outperforms the state-of-art models and achieved an accuracy, precision, and recall score of 99.73%, 99.46%, and 100%, respectively.
Collapse
Affiliation(s)
- Md Robiul Islam
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Nahiduzzaman
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| |
Collapse
|
73
|
Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PSC, Saba L, Mehmedović A, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Fouda MM, Naidu S, Viskovic K, Kalra MK. COVLIAS 1.0 Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans. Diagnostics (Basel) 2022; 12:1283. [PMID: 35626438 PMCID: PMC9141749 DOI: 10.3390/diagnostics12051283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann−Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Armin Mehmedović
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95661, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Klaudija Viskovic
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
74
|
Showkat S, Qureshi S. Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2022; 224:104534. [PMID: 35291673 PMCID: PMC8913041 DOI: 10.1016/j.chemolab.2022.104534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 05/27/2023]
Abstract
Because of COVID-19's effect on pulmonary tissues, Chest X-ray(CXR) and Computed Tomography (CT) images have become the preferred imaging modality for detecting COVID-19 infections at the early diagnosis stages, particularly when the symptoms are not specific. A significant fraction of individuals with COVID-19 have negative polymerase chain reaction (PCR) test results; therefore, imaging studies coupled with epidemiological, clinical, and laboratory data assist in the decision making. With the newer variants of COVID-19 emerging, the burden on diagnostic laboratories has increased manifold. Therefore, it is important to employ beyond laboratory measures to solve complex CXR image classification problems. One such tool is Convolutional Neural Network (CNN), one of the most dominant Deep Learning (DL) architectures. DL entails training a CNN for a task such as classification using extensive datasets. However, the labelled data for COVID-19 is scarce, proving to be a prime impediment to applying DL-assisted analysis. The available datasets are either scarce or too diversified to learn effective feature representations; therefore Transfer Learning (TL) approach is utilized. TL-based ResNet architecture has a powerful representational ability, making it popular in Computer Vision. The aim of this study is two-fold- firstly, to assess the performance of ResNet models for classifying Pneumonia cases from CXR images and secondly, to build a customized ResNet model and evaluate its contribution to the performance improvement. The global accuracies achieved by the five models i.e., ResNet18_v1, ResNet34_v1, ResNet50_v1, ResNet101_v1, ResNet152_v1 are 91.35%, 90.87%, 92.63%, 92.95%, and 92.95% respectively. ResNet50_v1 displayed the highest sensitivity of 97.18%, ResNet101_v1 showed the specificity of 94.02%, and ResNet18_v1 had the highest precision of 93.53%. The findings are encouraging, demonstrating the effectiveness of ResNet in the automatic detection of Pneumonia for COVID-19 diagnosis. The customized ResNet model presented in this study achieved 95% global accuracy, 95.65% precision, 92.74% specificity, and 95.9% sensitivity, thereby allowing a reliable analysis of CXR images to facilitate the clinical decision-making process. All simulations were carried in PyTorch utilizing Quadro 4000 GPU with Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz processor and 63.9 GB useable RAM.
Collapse
Affiliation(s)
- Sadia Showkat
- Department of Computer Science and Engineering, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
| | - Shaima Qureshi
- Department of Computer Science and Engineering, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
75
|
Kavouras I, Kaselimi M, Protopapadakis E, Bakalos N, Doulamis N, Doulamis A. COVID-19 Spatio-Temporal Evolution Using Deep Learning at a European Level. SENSORS (BASEL, SWITZERLAND) 2022; 22:3658. [PMID: 35632066 PMCID: PMC9143095 DOI: 10.3390/s22103658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
COVID-19 evolution imposes significant challenges for the European healthcare system. The heterogeneous spread of the pandemic within EU regions elicited a wide range of policies, such as school closure, transport restrictions, etc. However, the implementation of these interventions is not accompanied by the implementation of quantitative methods, which would indicate their effectiveness. As a result, the efficacy of such policies on reducing the spread of the virus varies significantly. This paper investigates the effectiveness of using deep learning paradigms to accurately model the spread of COVID-19. The deep learning approaches proposed in this paper are able to effectively map the temporal evolution of a COVID-19 outbreak, while simultaneously taking into account policy interventions directly into the modelling process. Thus, our approach facilitates data-driven decision making by utilizing previous knowledge to train models that predict not only the spread of COVID-19, but also the effect of specific policy measures on minimizing this spread. Global models at the EU level are proposed, which can be successfully applied at the national level. These models use various inputs in order to successfully model the spatio-temporal variability of the phenomenon and obtain generalization abilities. The proposed models are compared against the traditional epidemiological and Autoregressive Integrated Moving Average (ARIMA) models.
Collapse
Affiliation(s)
- Ioannis Kavouras
- School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15772 Athens, Greece; (E.P.); (N.B.); (N.D.); (A.D.)
| | - Maria Kaselimi
- School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15772 Athens, Greece; (E.P.); (N.B.); (N.D.); (A.D.)
| | | | | | | | | |
Collapse
|
76
|
Gampala V, Rathan K, S CN, Shajin FH, Rajesh P. Diagnosis of COVID-19 patients by adapting hyper parametertuned deep belief network using hosted cuckoo optimization algorithm. Electromagn Biol Med 2022; 41:257-271. [PMID: 35491901 DOI: 10.1080/15368378.2022.2065679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
COVID-19 is an infection caused by recently discovered corona virus. The symptoms of COVID-19 are fever, cough and dumpiness of breathing. A quick and accurate identification is essential for an efficient fight against COVID-19. A machine learning technique is initiated for categorizing the chest x-ray images into two cases: COVID-19 positive case or negative case. In this manuscript, the categorization of COVID-19 can be determined by hyper parameter tuned deep belief network using hosted cuckoo optimization algorithm. At first, the input chest x-ray images are pre-processed for removing noises. In this manuscript, the deep belief network method is enhanced by hosted cuckoo optimization approach for getting optimum hyper tuning parameters. By this, exact categorization of COVID-19 is attained effectively. The proposed methodology is stimulated at MATLAB. The proposed approach attains 28.3% and 23.5% higher accuracy for Normal and 32.3% and 31.5% higher accuracy for COVID-19, 19.3% and 28.5% higher precision for Normal and 45.3% and 28.5% higher precision for COVID-19, 20.3% and 21.5% higher F-score for Normal and 40.3% and 21.5% higher F-score for COVID-19. The proposed methodology is analyzed using two existing methodologies, as Convolutional Neural Network with Social Mimic Optimization (CNN-SMO) and Support Vector Machine classifier using Bayesian Optimization algorithm (SVM-BOA).
Collapse
Affiliation(s)
- Veerraju Gampala
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India
| | | | - Christalin Nelson S
- Systemics Cluster, School of Computer Science, University of Petroleum and Energy Studies(UPES), Energy Acres, Bidholi, Dehradun, Uttarakhand, Dehradun, India
| | - Francis H Shajin
- Department of Electronics and Communication Engineering, Anna University, Chennai,India
| | - P Rajesh
- Department of Electrical and Electronics Engineering, Anna University, Chennai, India
| |
Collapse
|
77
|
Karthick K, Aruna SK, Samikannu R, Kuppusamy R, Teekaraman Y, Thelkar AR. Implementation of a Heart Disease Risk Prediction Model Using Machine Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6517716. [PMID: 35547562 PMCID: PMC9085310 DOI: 10.1155/2022/6517716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease prediction aids practitioners in making more accurate health decisions for their patients. Early detection can aid people in making lifestyle changes and, if necessary, ensuring effective medical care. Machine learning (ML) is a plausible option for reducing and understanding heart symptoms of disease. The chi-square statistical test is performed to select specific attributes from the Cleveland heart disease (HD) dataset. Support vector machine (SVM), Gaussian Naive Bayes, logistic regression, LightGBM, XGBoost, and random forest algorithm have been employed for developing heart disease risk prediction model and obtained the accuracy as 80.32%, 78.68%, 80.32%, 77.04%, 73.77%, and 88.5%, respectively. The data visualization has been generated to illustrate the relationship between the features. According to the findings of the experiments, the random forest algorithm achieves 88.5% accuracy during validation for 303 data instances with 13 selected features of the Cleveland HD dataset.
Collapse
Affiliation(s)
- K. Karthick
- Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India
| | - S. K. Aruna
- Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Ravi Samikannu
- Department of Electrical Computer and Telecommunications Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ramya Kuppusamy
- Department of Electrical and Electronics Engineering, Sri Sairam College of Engineering, Bangalore City, India
| | - Yuvaraja Teekaraman
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK
| | - Amruth Ramesh Thelkar
- Faculty of Electrical & Computer Engineering, Jimma Institute of Technology, Jimma University, Ethiopia
| |
Collapse
|
78
|
Ibrahim DA, Zebari DA, Mohammed HJ, Mohammed MA. Effective hybrid deep learning model for COVID-19 patterns identification using CT images. EXPERT SYSTEMS 2022; 39:e13010. [PMID: 35942177 PMCID: PMC9348188 DOI: 10.1111/exsy.13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 05/31/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has attracted significant attention of researchers from various disciplines since the end of 2019. Although the global epidemic situation is stabilizing due to vaccination, new COVID-19 cases are constantly being discovered around the world. As a result, lung computed tomography (CT) examination, an aggregated identification technique, has been used to ameliorate diagnosis. It helps reveal missed diagnoses due to the ambiguity of nucleic acid polymerase chain reaction. Therefore, this study investigated how quickly and accurately hybrid deep learning (DL) methods can identify infected individuals with COVID-19 on the basis of their lung CT images. In addition, this study proposed a developed system to create a reliable COVID-19 prediction network using various layers starting with the segmentation of the lung CT scan image and ending with disease prediction. The initial step of the system starts with a proposed technique for lung segmentation that relies on a no-threshold histogram-based image segmentation method. Afterward, the GrabCut method was used as a post-segmentation method to enhance segmentation outcomes and avoid over-and under-segmentation problems. Then, three pre-trained models of standard DL methods, including Visual Geometry Group Network, convolutional deep belief network, and high-resolution network, were utilized to extract the most affective features from the segmented images that can help to identify COVID-19. These three described pre-trained models were combined as a new mechanism to increase the system's overall prediction capabilities. A publicly available dataset, namely, COVID-19 CT, was used to test the performance of the proposed model, which obtained a 95% accuracy rate. On the basis of comparison, the proposed model outperformed several state-of-the-art studies. Because of its effectiveness in accurately screening COVID-19 CT images, the developed model will potentially be valuable as an additional diagnostic tool for leading clinical professionals.
Collapse
Affiliation(s)
- Dheyaa Ahmed Ibrahim
- Communications Engineering Techniques Department, Information Technology CollageImam Ja'afar Al‐Sadiq UniversityBaghdadIraq
| | - Dilovan Asaad Zebari
- Department of Computer Science, College of ScienceNawroz UniversityDuhok Kurdistan RegionIraq
| | | | - Mazin Abed Mohammed
- Information systems Department, College of Computer Science and Information TechnologyUniversity of AnbarAl AnbarIraq
| |
Collapse
|
79
|
Hassan H, Ren Z, Zhou C, Khan MA, Pan Y, Zhao J, Huang B. Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106731. [PMID: 35286874 PMCID: PMC8897838 DOI: 10.1016/j.cmpb.2022.106731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 05/05/2023]
Abstract
Artificial intelligence (AI) and computer vision (CV) methods become reliable to extract features from radiological images, aiding COVID-19 diagnosis ahead of the pathogenic tests and saving critical time for disease management and control. Thus, this review article focuses on cascading numerous deep learning-based COVID-19 computerized tomography (CT) imaging diagnosis research, providing a baseline for future research. Compared to previous review articles on the topic, this study pigeon-holes the collected literature very differently (i.e., its multi-level arrangement). For this purpose, 71 relevant studies were found using a variety of trustworthy databases and search engines, including Google Scholar, IEEE Xplore, Web of Science, PubMed, Science Direct, and Scopus. We classify the selected literature in multi-level machine learning groups, such as supervised and weakly supervised learning. Our review article reveals that weak supervision has been adopted extensively for COVID-19 CT diagnosis compared to supervised learning. Weakly supervised (conventional transfer learning) techniques can be utilized effectively for real-time clinical practices by reusing the sophisticated features rather than over-parameterizing the standard models. Few-shot and self-supervised learning are the recent trends to address data scarcity and model efficacy. The deep learning (artificial intelligence) based models are mainly utilized for disease management and control. Therefore, it is more appropriate for readers to comprehend the related perceptive of deep learning approaches for the in-progress COVID-19 CT diagnosis research.
Collapse
Affiliation(s)
- Haseeb Hassan
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
| | - Zhaoyu Ren
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chengmin Zhou
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Muazzam A Khan
- Department of Computer Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jian Zhao
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Bingding Huang
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
80
|
Research on Design of Emergency Science Popularization Information Visualization for Public Health Events-Taking “COVID-19”as an Example. SUSTAINABILITY 2022. [DOI: 10.3390/su14074022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study explores the optimization method of emergency popular science information design elements in public health events, breaks through the traditional design with the designer as the subjective consciousness and proposes an emergency popular science information design method oriented by perceptual narrative. First, relevant research on public health events was carried out to screen out and analyze relevant narrative information elements and image elements, and narrative element divergence tree was established to show evaluation indicators. Second, relevant personnel were invited to evaluate the importance and kansei engineering, factor analysis and other methods were used to establish the correlation evaluation indicators of narrative elements. Finally, the optimization narrative elements of popular science information design were calculated with the fuzzy evaluation method to provide an effective auxiliary role for the visualization design of emergency popular science information. Taking “COVID-19 Event” as an example, the narrative design practice of emergency popular science elements was carried out. According to 313 effective questionnaires, the satisfaction of “COVID-19 event” popular science information elements that adopt the optimization method is relatively high, which verifies the feasibility of this method. The conclusion proves that the perceptual narrative design method can obtain the perceptual identity from the audience and plays a positive role in disseminating emergency popular science information.
Collapse
|
81
|
Zhang X, Wang G, Zhao SG. CapsNet-COVID19: Lung CT image classification method based on CapsNet model. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5055-5074. [PMID: 35430853 DOI: 10.3934/mbe.2022236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outbreak of the Corona Virus Disease 2019 (COVID-19) has posed a serious threat to human health and life around the world. As the number of COVID-19 cases continues to increase, many countries are facing problems such as errors in nucleic acid testing (RT-PCR), shortage of testing reagents, and lack of testing personnel. In order to solve such problems, it is necessary to propose a more accurate and efficient method as a supplement to the detection and diagnosis of COVID-19. This research uses a deep network model to classify some of the COVID-19, general pneumonia, and normal lung CT images in the 2019 Novel Coronavirus Information Database. The first level of the model uses convolutional neural networks to locate lung regions in lung CT images. The second level of the model uses the capsule network to classify and predict the segmented images. The accuracy of our method is 84.291% on the test set and 100% on the training set. Experiment shows that our classification method is suitable for medical image classification with complex background, low recognition rate, blurred boundaries and large image noise. We believe that this classification method is of great value for monitoring and controlling the growth of patients in COVID-19 infected areas.
Collapse
Affiliation(s)
- XiaoQing Zhang
- Nanjing University of Science and Technology, Taizhou Technology Institute, Taizhou 225300, China
| | - GuangYu Wang
- Donghua University, College of Information Science and Technology, Shanghai 201620, China
| | - Shu-Guang Zhao
- Donghua University, College of Information Science and Technology, Shanghai 201620, China
| |
Collapse
|
82
|
Singh A, Krishna Raguru J, Prasad G, Chauhan S, Tiwari PK, Zaguia A, Ullah MA. Medical Image Captioning Using Optimized Deep Learning Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9638438. [PMID: 35341200 PMCID: PMC8947912 DOI: 10.1155/2022/9638438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/03/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Medical image captioning provides the visual information of medical images in the form of natural language. It requires an efficient approach to understand and evaluate the similarity between visual and textual elements and to generate a sequence of output words. A novel show, attend, and tell model (ATM) is implemented, which considers a visual attention approach using an encoder-decoder model. But the show, attend, and tell model is sensitive to its initial parameters. Therefore, a Strength Pareto Evolutionary Algorithm-II (SPEA-II) is utilized to optimize the initial parameters of the ATM. Finally, experiments are considered using the benchmark data sets and competitive medical image captioning techniques. Performance analysis shows that the SPEA-II-based ATM performs significantly better as compared to the existing models.
Collapse
Affiliation(s)
- Arjun Singh
- Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Gaurav Prasad
- Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Surbhi Chauhan
- Computer Science and Engineering, Jaipur Institute of Engineering and Management, Jaipur, India
| | | | - Atef Zaguia
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Aman Ullah
- Department of Computer Science and Engineering, International Islamic University, Chittagong, Bangladesh
| |
Collapse
|
83
|
Alyasseri ZAA, Al‐Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, Alomari OA, Abdulkareem KH, Adam A, Damasevicius R, Mohammed MA, Zitar RA. Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. EXPERT SYSTEMS 2022; 39:e12759. [PMID: 34511689 PMCID: PMC8420483 DOI: 10.1111/exsy.12759] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
Collapse
Affiliation(s)
- Zaid Abdi Alkareem Alyasseri
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
- ECE Department‐Faculty of EngineeringUniversity of KufaNajafIraq
| | - Mohammed Azmi Al‐Betar
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Information TechnologyAl‐Huson University College, Al‐Balqa Applied UniversityIrbidJordan
| | - Iyad Abu Doush
- Computing Department, College of Engineering and Applied SciencesAmerican University of KuwaitSalmiyaKuwait
- Computer Science DepartmentYarmouk UniversityIrbidJordan
| | - Mohammed A. Awadallah
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Computer ScienceAl‐Aqsa UniversityGazaPalestine
| | - Ammar Kamal Abasi
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- School of Computer SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Faculty of Information TechnologyMiddle East UniversityAmmanJordan
| | | | | | - Afzan Adam
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | | | - Mazin Abed Mohammed
- College of Computer Science and Information TechnologyUniversity of AnbarAnbarIraq
| | - Raed Abu Zitar
- Sorbonne Center of Artificial IntelligenceSorbonne University‐Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
84
|
Subhalakshmi RT, Balamurugan SAA, Sasikala S. Deep learning based fusion model for COVID-19 diagnosis and classification using computed tomography images. CONCURRENT ENGINEERING, RESEARCH, AND APPLICATIONS 2022; 30:116-127. [PMID: 35382156 PMCID: PMC8968394 DOI: 10.1177/1063293x211021435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recently, the COVID-19 pandemic becomes increased in a drastic way, with the availability of a limited quantity of rapid testing kits. Therefore, automated COVID-19 diagnosis models are essential to identify the existence of disease from radiological images. Earlier studies have focused on the development of Artificial Intelligence (AI) techniques using X-ray images on COVID-19 diagnosis. This paper aims to develop a Deep Learning Based MultiModal Fusion technique called DLMMF for COVID-19 diagnosis and classification from Computed Tomography (CT) images. The proposed DLMMF model operates on three main processes namely Weiner Filtering (WF) based pre-processing, feature extraction and classification. The proposed model incorporates the fusion of deep features using VGG16 and Inception v4 models. Finally, Gaussian Naïve Bayes (GNB) based classifier is applied for identifying and classifying the test CT images into distinct class labels. The experimental validation of the DLMMF model takes place using open-source COVID-CT dataset, which comprises a total of 760 CT images. The experimental outcome defined the superior performance with the maximum sensitivity of 96.53%, specificity of 95.81%, accuracy of 96.81% and F-score of 96.73%.
Collapse
Affiliation(s)
- RT Subhalakshmi
- Department of Information Technology, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - S Appavu alias Balamurugan
- Department of Computer Science, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
- S Appavu alias Balamurugan, Department of Computer Science, Central University of Tamil Nadu, Thiruvarur – 610 005, Tamilnadu, India.
| | - S Sasikala
- Department of Computer Science and Engineering, Velammal College of Engineering and Technology, Madurai, Tamil Nadu, India
| |
Collapse
|
85
|
Kalaycı M, Ayyıldız H, Tuncer SA, Bozdag PG, Karlidag GE. Can laboratory parameters be an alternative to CT and RT-PCR in the diagnosis of COVID-19? A machine learning approach. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2022; 32:435-443. [PMID: 35465212 PMCID: PMC9015244 DOI: 10.1002/ima.22705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, a machine learning-based decision support system that uses routine laboratory parameters has been proposed in order to increase the diagnostic success in COVID-19. The main goal of the proposed method was to reduce the number of misdiagnoses in the RT-PCR and CT scans and to reduce the cost of testing. In this study, we retrospectively reviewed the files of patients who presented to the coronavirus outpatient. The demographic, thoracic CT, and laboratory data of the individuals without any symptoms of the disease, who had negative RT-PCR test and who had positive RT-PCR test were analyzed. CT images were classified using hybrid CNN methods to show the superiority of the decision support system using laboratory parameters. Detection of COVID-19 from CT images achieved an accuracy of 97.56% with the AlexNet-SVM hybrid method, while COVID-19 was classified with an accuracy of 97.86% with the proposed method using laboratory parameters.
Collapse
Affiliation(s)
- Mehmet Kalaycı
- Department of Medical BiochemistryElazig Fethi Sekin City HospitalElazığTurkey
| | - Hakan Ayyıldız
- Department of Medical BiochemistryElazig Fethi Sekin City HospitalElazığTurkey
| | | | | | - Gulden Eser Karlidag
- Department of Clinic of Infectious Diseases and Clinical MicrobiologyUniversity of Health Sciences, Elazig Fethi Sekin City HospitalElazığTurkey
| |
Collapse
|
86
|
Awassa L, Jdey I, Dhahri H, Hcini G, Mahmood A, Othman E, Haneef M. Study of Different Deep Learning Methods for Coronavirus (COVID-19) Pandemic: Taxonomy, Survey and Insights. SENSORS (BASEL, SWITZERLAND) 2022; 22:1890. [PMID: 35271037 PMCID: PMC8915023 DOI: 10.3390/s22051890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 has evolved into one of the most severe and acute illnesses. The number of deaths continues to climb despite the development of vaccines and new strains of the virus have appeared. The early and precise recognition of COVID-19 are key in viably treating patients and containing the pandemic on the whole. Deep learning technology has been shown to be a significant tool in diagnosing COVID-19 and in assisting radiologists to detect anomalies and numerous diseases during this epidemic. This research seeks to provide an overview of novel deep learning-based applications for medical imaging modalities, computer tomography (CT) and chest X-rays (CXR), for the detection and classification COVID-19. First, we give an overview of the taxonomy of medical imaging and present a summary of types of deep learning (DL) methods. Then, utilizing deep learning techniques, we present an overview of systems created for COVID-19 detection and classification. We also give a rundown of the most well-known databases used to train these networks. Finally, we explore the challenges of using deep learning algorithms to detect COVID-19, as well as future research prospects in this field.
Collapse
Affiliation(s)
- Lamia Awassa
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Imen Jdey
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Habib Dhahri
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Ghazala Hcini
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Awais Mahmood
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Esam Othman
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Muhammad Haneef
- Department of Electrical Engineering, Foundation University Islamabad, Islamabad 44000, Pakistan;
| |
Collapse
|
87
|
Abstract
As an innovative way of communicating information, the Internet has become an indispensable part of our lives. However, it also facilitates a more widespread attack of malware. With the assistance of modern cryptanalysis, emerging malware having symmetric properties, such as encryption and decryption, pack and unpack, presents new challenges to effective malware detection. Currently, numerous malware detection approaches are based on supervised learning. The biggest challenge is that the existing systems rely on a large amount of labeled data, which is usually difficult to gain. Moreover, since the newly emerging malware has a different data distribution from the original training samples, the detection performance of these systems will degrade along with the emergence of new malware. To solve these problems, we propose an Unsupervised Domain Adaptation (UDA)-based malware detection method by jointly aligning the distribution of known and unknown malware. Firstly, the distribution divergence between the source and target domain is minimized with the help of symmetric adversarial learning to learn shared feature representations. Secondly, to further obtain semantic information of unlabeled target domain data, this paper reduces the class-level distribution divergence by aligning the class center of labeled source and pseudo-labeled target domain data. Finally, we mainly use a residual network with a self-attention mechanism to extract more accurate feature information. A series of experiments are performed on two public datasets. Experimental results illustrate that the proposed approach outperforms the existing detection methods with an accuracy of 95.63% and 95.04% in detecting unknown malware on two datasets, respectively.
Collapse
|
88
|
Hassan H, Ren Z, Zhao H, Huang S, Li D, Xiang S, Kang Y, Chen S, Huang B. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Comput Biol Med 2022; 141:105123. [PMID: 34953356 PMCID: PMC8684223 DOI: 10.1016/j.compbiomed.2021.105123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023]
Abstract
This article presents a systematic overview of artificial intelligence (AI) and computer vision strategies for diagnosing the coronavirus disease of 2019 (COVID-19) using computerized tomography (CT) medical images. We analyzed the previous review works and found that all of them ignored classifying and categorizing COVID-19 literature based on computer vision tasks, such as classification, segmentation, and detection. Most of the COVID-19 CT diagnosis methods comprehensively use segmentation and classification tasks. Moreover, most of the review articles are diverse and cover CT as well as X-ray images. Therefore, we focused on the COVID-19 diagnostic methods based on CT images. Well-known search engines and databases such as Google, Google Scholar, Kaggle, Baidu, IEEE Xplore, Web of Science, PubMed, ScienceDirect, and Scopus were utilized to collect relevant studies. After deep analysis, we collected 114 studies and reported highly enriched information for each selected research. According to our analysis, AI and computer vision have substantial potential for rapid COVID-19 diagnosis as they could significantly assist in automating the diagnosis process. Accurate and efficient models will have real-time clinical implications, though further research is still required. Categorization of literature based on computer vision tasks could be helpful for future research; therefore, this review article will provide a good foundation for conducting such research.
Collapse
Affiliation(s)
- Haseeb Hassan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhaoyu Ren
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Huishi Zhao
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Shoujin Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Dan Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Shaohua Xiang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Yan Kang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; Medical Device Innovation Research Center, Shenzhen Technology University, Shenzhen, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
| |
Collapse
|
89
|
Napolitano F, Xu X, Gao X. Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Brief Bioinform 2022; 23:bbab456. [PMID: 34788381 PMCID: PMC8689952 DOI: 10.1093/bib/bbab456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 caused the first severe pandemic of the digital era. Computational approaches have been ubiquitously used in an attempt to timely and effectively cope with the resulting global health crisis. In order to extensively assess such contribution, we collected, categorized and prioritized over 17 000 COVID-19-related research articles including both peer-reviewed and preprint publications that make a relevant use of computational approaches. Using machine learning methods, we identified six broad application areas i.e. Molecular Pharmacology and Biomarkers, Molecular Virology, Epidemiology, Healthcare, Clinical Medicine and Clinical Imaging. We then used our prioritization model as a guidance through an extensive, systematic review of the most relevant studies. We believe that the remarkable contribution provided by computational applications during the ongoing pandemic motivates additional efforts toward their further development and adoption, with the aim of enhancing preparedness and critical response for current and future emergencies.
Collapse
Affiliation(s)
- Francesco Napolitano
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Makkah, Saudi Arabia
| | - Xiaopeng Xu
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Makkah, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Makkah, Saudi Arabia
| |
Collapse
|
90
|
Demir F, Demir K, Şengür A. DeepCov19Net: Automated COVID-19 Disease Detection with a Robust and Effective Technique Deep Learning Approach. NEW GENERATION COMPUTING 2022; 40:1053-1075. [PMID: 35035024 PMCID: PMC8753945 DOI: 10.1007/s00354-021-00152-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/26/2021] [Indexed: 05/17/2023]
Abstract
The new type of coronavirus disease, which has spread from Wuhan, China since the beginning of 2020 called COVID-19, has caused many deaths and cases in most countries and has reached a global pandemic scale. In addition to test kits, imaging techniques with X-rays used in lung patients have been frequently used in the detection of COVID-19 cases. In the proposed method, a novel approach based on a deep learning model named DeepCovNet was utilized to classify chest X-ray images containing COVID-19, normal (healthy), and pneumonia classes. The convolutional-autoencoder model, which had convolutional layers in encoder and decoder blocks, was trained by using the processed chest X-ray images from scratch for deep feature extraction. The distinctive features were selected with a novel and robust algorithm named SDAR from the deep feature set. In the classification stage, an SVM classifier with various kernel functions was used to evaluate the classification performance of the proposed method. Also, hyperparameters of the SVM classifier were optimized with the Bayesian algorithm for increasing classification accuracy. Specificity, sensitivity, precision, and F-score, were also used as performance metrics in addition to accuracy which was used as the main criterion. The proposed method with an accuracy of 99.75 outperformed the other approaches based on deep learning.
Collapse
Affiliation(s)
- Fatih Demir
- Biomedical Department, Vocational School of Technical Sciences, Firat University, Elazig, Turkey
| | - Kürşat Demir
- Mechatronics Engineering Department, Technology Faculty, Firat University, Elazig, Turkey
| | - Abdulkadir Şengür
- Electrical-Electronics Engineering Department, Technology Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
91
|
Irmak E. COVID-19 disease diagnosis from paper-based ECG trace image data using a novel convolutional neural network model. Phys Eng Sci Med 2022; 45:167-179. [PMID: 35020175 PMCID: PMC8753334 DOI: 10.1007/s13246-022-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/06/2022] [Indexed: 10/29/2022]
Abstract
Clinical reports show that COVID-19 disease has impacts on the cardiovascular system in addition to the respiratory system. Available COVID-19 diagnostic methods have been shown to have limitations. In addition to current diagnostic methods such as low-sensitivity standard RT-PCR tests and expensive medical imaging devices, the development of alternative methods for the diagnosis of COVID-19 disease would be beneficial for control of the COVID-19 pandemic. Further, it is important to quickly and accurately detect abnormalities caused by COVID-19 on the cardiovascular system via ECG. In this study, the diagnosis of COVID-19 disease is proposed using a novel deep Convolutional Neural Network model by using only ECG trace images created from ECG signals of COVID-19 infected patients based on the abnormalities caused by the COVID-19 virus on the cardiovascular system. An overall classification accuracy of 98.57%, 93.20%, 96.74% and AUC value of 0.9966, 0.9771, 0.9905 is achieved for COVID-19 vs. Normal, COVID-19 vs. Abnormal Heartbeats, COVID-19 vs. Myocardial Infarction binary classification tasks, respectively. In addition, an overall classification accuracy of 86.55% and 83.05% is achieved for COVID-19 vs. Abnormal Heartbeats vs. Myocardial Infarction and Normal vs. COVID-19 vs. Abnormal Heartbeats vs. Myocardial Infarction multi-classification tasks. This study is believed to have great potential to speed up the diagnosis and treatment of COVID-19 patients, saving clinicians time and facilitating the control of the pandemic.
Collapse
Affiliation(s)
- Emrah Irmak
- Electrical-Electronics Engineering Department, Alanya Alaaddin Keykubat University, 07425, Alanya, Antalya, Turkey.
| |
Collapse
|
92
|
Abou-Kreisha MT, Yaseen HK, Fathy KA, Ebeid EA, ElDahshan KA. Multisource Smart Computer-Aided System for Mining COVID-19 Infection Data. Healthcare (Basel) 2022; 10:109. [PMID: 35052273 PMCID: PMC8775247 DOI: 10.3390/healthcare10010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we approach the problem of detecting and diagnosing COVID-19 infections using multisource scan images including CT and X-ray scans to assist the healthcare system during the COVID-19 pandemic. Here, a computer-aided diagnosis (CAD) system is proposed that utilizes analysis of the CT or X-ray to diagnose the impact of damage in the respiratory system per infected case. The CAD was utilized and optimized by hyper-parameters for shallow learning, e.g., SVM and deep learning. For the deep learning, mini-batch stochastic gradient descent was used to overcome fitting problems during transfer learning. The optimal parameter list values were found using the naïve Bayes technique. Our contributions are (i) a comparison among the detection rates of pre-trained CNN models, (ii) a suggested hybrid deep learning with shallow machine learning, (iii) an extensive analysis of the results of COVID-19 transition and informative conclusions through developing various transfer techniques, and (iv) a comparison of the accuracy of the previous models with the systems of the present study. The effectiveness of the proposed CAD is demonstrated using three datasets, either using an intense learning model as a fully end-to-end solution or using a hybrid deep learning model. Six experiments were designed to illustrate the superior performance of our suggested CAD when compared to other similar approaches. Our system achieves 99.94, 99.6, 100, 97.41, 99.23, and 98.94 accuracy for binary and three-class labels for the CT and two CXR datasets.
Collapse
Affiliation(s)
| | - Humam K. Yaseen
- Mathematics Department, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt; (M.T.A.-K.); (K.A.F.); (E.A.E.); (K.A.E.)
| | | | | | | |
Collapse
|
93
|
Peng Y, Liu E, Peng S, Chen Q, Li D, Lian D. Using artificial intelligence technology to fight COVID-19: a review. Artif Intell Rev 2022; 55:4941-4977. [PMID: 35002010 PMCID: PMC8720541 DOI: 10.1007/s10462-021-10106-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 02/10/2023]
Abstract
In late December 2019, a new type of coronavirus was discovered, which was later named severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Since its discovery, the virus has spread globally, with 2,975,875 deaths as of 15 April 2021, and has had a huge impact on our health systems and economy. How to suppress the continued spread of new coronary pneumonia is the main task of many scientists and researchers. The introduction of artificial intelligence technology has provided a huge contribution to the suppression of the new coronavirus. This article discusses the main application of artificial intelligence technology in the suppression of coronavirus from three major aspects of identification, prediction, and development through a large amount of literature research, and puts forward the current main challenges and possible development directions. The results show that it is an effective measure to combine artificial intelligence technology with a variety of new technologies to predict and identify COVID-19 patients.
Collapse
Affiliation(s)
- Yong Peng
- Petroleum Engineering School, Southwest Petroleum University, Chengdu, 610500 China
| | - Enbin Liu
- Petroleum Engineering School, Southwest Petroleum University, Chengdu, 610500 China
| | - Shanbi Peng
- School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, 610500 China
| | - Qikun Chen
- School of Engineering, Cardiff University, Cardiff, CF24 3AA UK
| | - Dangjian Li
- Petroleum Engineering School, Southwest Petroleum University, Chengdu, 610500 China
| | - Dianpeng Lian
- Petroleum Engineering School, Southwest Petroleum University, Chengdu, 610500 China
| |
Collapse
|
94
|
Kallel A, Rekik M, Khemakhem M. Hybrid-based framework for COVID-19 prediction via federated machine learning models. THE JOURNAL OF SUPERCOMPUTING 2022; 78:7078-7105. [PMID: 34754141 PMCID: PMC8570244 DOI: 10.1007/s11227-021-04166-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 05/03/2023]
Abstract
The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python's libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and F1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.
Collapse
Affiliation(s)
- Ameni Kallel
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
- Département Technologies de l’Informatique, Higher Institute of Technological Studies (ISET), Sidi Bouzid, Tunisia
| | - Molka Rekik
- Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Mahdi Khemakhem
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, AlKharj, 11942 Saudi Arabia
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
95
|
Chen JJ, Lin PH, Lin YY, Pu KY, Wang CF, Lin SY, Chen TS. Detection of Cytopathic Effects Induced by Influenza, Parainfluenza, and Enterovirus Using Deep Convolution Neural Network. Biomedicines 2021; 10:70. [PMID: 35052750 PMCID: PMC8772705 DOI: 10.3390/biomedicines10010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
The isolation of a virus using cell culture to observe its cytopathic effects (CPEs) is the main method for identifying the viruses in clinical specimens. However, the observation of CPEs requires experienced inspectors and excessive time to inspect the cell morphology changes. In this study, we utilized artificial intelligence (AI) to improve the efficiency of virus identification. After some comparisons, we used ResNet-50 as a backbone with single and multi-task learning models to perform deep learning on the CPEs induced by influenza, enterovirus, and parainfluenza. The accuracies of the single and multi-task learning models were 97.78% and 98.25%, respectively. In addition, the multi-task learning model increased the accuracy of the single model from 95.79% to 97.13% when only a few data of the CPEs induced by parainfluenza were provided. We modified both models by inserting a multiplexer and de-multiplexer layer, respectively, to increase the correct rates for known cell lines. In conclusion, we provide a deep learning structure with ResNet-50 and the multi-task learning model and show an excellent performance in identifying virus-induced CPEs.
Collapse
Affiliation(s)
- Jen-Jee Chen
- College of Artificial Intelligence, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan;
- Industry Academia Innovation School, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
| | - Po-Han Lin
- Department of Electrical Engineering, National University of Tainan, Tainan 700301, Taiwan; (P.-H.L.); (K.-Y.P.)
| | - Yi-Ying Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.L.); (C.-F.W.)
| | - Kun-Yi Pu
- Department of Electrical Engineering, National University of Tainan, Tainan 700301, Taiwan; (P.-H.L.); (K.-Y.P.)
| | - Chu-Feng Wang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.L.); (C.-F.W.)
| | - Shang-Yi Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.L.); (C.-F.W.)
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzung-Shi Chen
- Department of Computer Science and Information Engineering, National University of Tainan, Tainan 700301, Taiwan;
| |
Collapse
|
96
|
Karlafti E, Anagnostis A, Kotzakioulafi E, Vittoraki MC, Eufraimidou A, Kasarjyan K, Eufraimidou K, Dimitriadou G, Kakanis C, Anthopoulos M, Kaiafa G, Savopoulos C, Didangelos T. Does COVID-19 Clinical Status Associate with Outcome Severity? An Unsupervised Machine Learning Approach for Knowledge Extraction. J Pers Med 2021; 11:1380. [PMID: 34945852 PMCID: PMC8705973 DOI: 10.3390/jpm11121380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, 195 million people have been infected and 4.2 million have died from the disease or its side effects. Physicians, healthcare scientists and medical staff continuously try to deal with overloaded hospital admissions, while in parallel, they try to identify meaningful correlations between the severity of infected patients with their symptoms, comorbidities and biomarkers. Artificial intelligence (AI) and machine learning (ML) have been used recently in many areas related to COVID-19 healthcare. The main goal is to manage effectively the wide variety of issues related to COVID-19 and its consequences. The existing applications of ML to COVID-19 healthcare are based on supervised classifications which require a labeled training dataset, serving as reference point for learning, as well as predefined classes. However, the existing knowledge about COVID-19 and its consequences is still not solid and the points of common agreement among different scientific communities are still unclear. Therefore, this study aimed to follow an unsupervised clustering approach, where prior knowledge is not required (tabula rasa). More specifically, 268 hospitalized patients at the First Propaedeutic Department of Internal Medicine of AHEPA University Hospital of Thessaloniki were assessed in terms of 40 clinical variables (numerical and categorical), leading to a high-dimensionality dataset. Dimensionality reduction was performed by applying a principal component analysis (PCA) on the numerical part of the dataset and a multiple correspondence analysis (MCA) on the categorical part of the dataset. Then, the Bayesian information criterion (BIC) was applied to Gaussian mixture models (GMM) in order to identify the optimal number of clusters under which the best grouping of patients occurs. The proposed methodology identified four clusters of patients with similar clinical characteristics. The analysis revealed a cluster of asymptomatic patients that resulted in death at a rate of 23.8%. This striking result forces us to reconsider the relationship between the severity of COVID-19 clinical symptoms and the patient's mortality.
Collapse
Affiliation(s)
- Eleni Karlafti
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
- Emergency Department, AHEPA University Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Athanasios Anagnostis
- Advanced Insights, Artificial Intelligence Solutions, Ipsilantou 10, Panorama, 55236 Thessaloniki, Greece;
| | - Evangelia Kotzakioulafi
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Michaela Chrysanthi Vittoraki
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Ariadni Eufraimidou
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Kristine Kasarjyan
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Katerina Eufraimidou
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Georgia Dimitriadou
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Chrisovalantis Kakanis
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Michail Anthopoulos
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Georgia Kaiafa
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Christos Savopoulos
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| | - Triantafyllos Didangelos
- First Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (M.C.V.); (A.E.); (K.K.); (K.E.); (G.D.); (C.K.); (M.A.); (G.K.); (C.S.); (T.D.)
| |
Collapse
|
97
|
Suri JS, Agarwal S, Carriero A, Paschè A, Danna PSC, Columbu M, Saba L, Viskovic K, Mehmedović A, Agarwal S, Gupta L, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Gupta A, Naidu S, Paraskevas KI, Kalra MK. COVLIAS 1.0 vs. MedSeg: Artificial Intelligence-Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts. Diagnostics (Basel) 2021; 11:2367. [PMID: 34943603 PMCID: PMC8699928 DOI: 10.3390/diagnostics11122367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020-2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland-Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Armin Mehmedović
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Samriddhi Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Lakshya Gupta
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | | | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| |
Collapse
|
98
|
Bhardwaj P, Kaur A. A novel and efficient deep learning approach for COVID-19 detection using X-ray imaging modality. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2021; 31:1775-1791. [PMID: 34518739 PMCID: PMC8426690 DOI: 10.1002/ima.22627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/06/2021] [Accepted: 06/27/2021] [Indexed: 05/03/2023]
Abstract
With the exponential growth of COVID-19 cases, medical practitioners are searching for accurate and quick automated detection methods to prevent Covid from spreading while trying to reduce the computational requirement of devices. In this research article, a deep learning Convolutional Neural Network (CNN) based accurate and efficient ensemble model using deep learning is being proposed with 2161 COVID-19, 2022 pneumonia, and 5863 normal chest X-ray images that has been collected from previous publications and other online resources. To improve the detection accuracy contrast enhancement and image normalization have been done to produce better quality images at the pre-processing level. Further data augmentation methods are used by creating modified versions of images in the dataset to train the four efficient CNN models (Inceptionv3, DenseNet121, Xception, InceptionResNetv2) Experimental results provide 98.33% accuracy for binary class and 92.36% for multiclass. The performance evaluation metrics reveal that this tool can be very helpful for early disease diagnosis.
Collapse
Affiliation(s)
| | - Amanpreet Kaur
- Electronics and CommunicationThapar UniversityPatialaIndia
| |
Collapse
|
99
|
A Novel COVID-19 Diagnosis Support System Using the Stacking Approach and Transfer Learning Technique on Chest X-Ray Images. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9437538. [PMID: 34777739 PMCID: PMC8589496 DOI: 10.1155/2021/9437538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
COVID-19 is an infectious disease-causing flu-like respiratory problem with various symptoms such as cough or fever, which in severe cases can cause pneumonia. The aim of this paper is to develop a rapid and accurate medical diagnosis support system to detect COVID-19 in chest X-ray images using a stacking approach combining transfer learning techniques and KNN algorithm for selection of the best model. In deep learning, we have multiple approaches for building a classification system for analyzing radiographic images. In this work, we used the transfer learning technique. This approach makes it possible to store and use the knowledge acquired from a pretrained convolutional neural network to solve a new problem. To ensure the robustness of the proposed system for diagnosing patients with COVID-19 using X-ray images, we used a machine learning method called the stacking approach to combine the performances of the many transfer learning-based models. The generated model was trained on a dataset containing four classes, namely, COVID-19, tuberculosis, viral pneumonia, and normal cases. The dataset used was collected from a six-source dataset of X-ray images. To evaluate the performance of the proposed system, we used different common evaluation measures. Our proposed system achieves an extremely good accuracy of 99.23% exceeding many previous related studies.
Collapse
|
100
|
Sahoo P, Roy I, Ahlawat R, Irtiza S, Khan L. Potential diagnosis of COVID-19 from chest X-ray and CT findings using semi-supervised learning. Phys Eng Sci Med 2021; 45:31-42. [PMID: 34780042 PMCID: PMC8591440 DOI: 10.1007/s13246-021-01075-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 is an infectious disease, which has adversely affected public health and the economy across the world. On account of the highly infectious nature of the disease, rapid automated diagnosis of COVID-19 is urgently needed. A few recent findings suggest that chest X-rays and CT scans can be used by machine learning for the diagnosis of COVID-19. Herein, we employed semi-supervised learning (SSL) approaches to detect COVID-19 cases accurately by analyzing digital chest X-rays and CT scans. On a relatively small COVID-19 radiography dataset, which contains only 219 COVID-19 positive images, 1341 normal and 1345 viral pneumonia images, our algorithm, COVIDCon, which takes advantage of data augmentation, consistency regularization, and multicontrastive learning, attains 97.07% average class prediction accuracy, with 1000 labeled images, which is 7.65% better than the next best SSL method, virtual adversarial training. COVIDCon performs even better on a larger COVID-19 CT Scan dataset that contains 82,767 images. It achieved an excellent accuracy of 99.13%, at 20,000 labels, which is 6.45% better than the next best pseudo-labeling approach. COVIDCon outperforms other state-of-the-art algorithms at every label that we have investigated. These results demonstrate COVIDCon as the benchmark SSL algorithm for potential diagnosis of COVID-19 from chest X-rays and CT-Scans. Furthermore, COVIDCon performs exceptionally well in identifying COVID-19 positive cases from a completely unseen repository with a confirmed COVID-19 case history. COVIDCon, may provide a fast, accurate, and reliable method for screening COVID-19 patients.
Collapse
Affiliation(s)
- Pracheta Sahoo
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Randeep Ahlawat
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Saquib Irtiza
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Latifur Khan
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|