51
|
Sun P, Fahd Q, Li Y, Sun Y, Li J, Qaria MA, He ZS, Fan Y, Zhang Q, Xu Q, Yin Z, Xu X, Li Y. Transcriptomic analysis of small intestinal mucosa from porcine epidemic diarrhea virus infected piglets. Microb Pathog 2019; 132:73-79. [PMID: 31026494 PMCID: PMC7125762 DOI: 10.1016/j.micpath.2019.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
Caused by porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PED) is an acute infectious disease which causes damage to the intestine including intestinal villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. In order to obtain detailed information about the pathogenesis and host immune response in a PEDV-infected host for first In vivo study we used high-throughput sequencing to analyze the gene expression differences of the small intestinal mucosa after infection with PEDV. Transcripts obtained were over 65,525,000 clean reads after reassembly were 22,605 genes detected, of which 22,248 were known genes and 371 new genes were predicted. Moreover, 3168 genes expression was up-regulated and 3876 genes down-regulated. (Gene Ontology) GO annotation and functional enrichment analysis indicated that all of the DEGs (differentially expressed genes) were annotated into biological process, cellular component and molecular function. Most of these unigenes are annotated in cellular processes, the cell and binding. KEGG analysis of the DEGs showed that a total of 7044 DEGs unigenes were annotated into 323 pathways classified into 6 main categories. Most of these unigenes are annotated were related to immune system response to the infectious diseases pathways. In addition, 20 DEGs were verified by quantitative real-time PCR. As the first, in vivo, RNAseq analysis of piglets and PEDV infection, our study provides knowledge about the transcriptomics of intestinal mucosa in PEDV-infected piglets, from which a complex molecular pathways and pathogenesis-related biological processes are involved in PEDV interaction with piglet intestinal mucosa.
Collapse
Affiliation(s)
- Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, Anhui, 230036, PR China.
| | - Qarih Fahd
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Yezhen Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Yao Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Jie Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Majjid A Qaria
- Pathogens Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India.
| | - Zhan Song He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Yuzhen Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Qiang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Xingang Xu
- College of Veterinary Medicine Northwest Agriculture and Forestry University. Yangling, Shanxi, 712100, PR China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| |
Collapse
|
52
|
Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:217-262. [PMID: 31810554 DOI: 10.1016/bs.ircmb.2019.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) facilitate cancer immunosurveillance, antitumor immunity and antitumor efficacy of conventional cell death-inducing therapies (chemotherapy/radiotherapy) as well as immunotherapy. Moreover, it is clear that dendritic cells (DCs) play a significant role in aiding type I IFN-driven immunity. Owing to these antitumor properties several immunotherapies involving, or inducing, type I IFNs have received considerable clinical attention, e.g., recombinant IFNα2 or agonists targeting pattern recognition receptor (PRR) pathways like Toll-like receptors (TLRs), cGAS-STING or RIG-I/MDA5/MAVS. A series of preclinical and clinical evidence concurs that the success of anticancer therapy hinges on responsiveness of both cancer cells and DCs to type I IFNs. In this article, we discuss this link between type I IFNs and DCs in the context of cancer biology, with particular attention to mechanisms behind type I IFN production, their impact on DC driven anticancer immunity, and the implications of this for cancer immunotherapy, including DC-based vaccines.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
53
|
Wu X, Yang D, Zhao F, Yang ZH, Wang D, Qiao M, Fang Y, Li W, Wu R, He P, Cong Y, Chen C, Hu L, Yan Y, Xie C, Wu Y, Han J, Zhong CQ. Quantification of Dynamic Protein Interactions and Phosphorylation in LPS Signaling Pathway by SWATH-MS. Mol Cell Proteomics 2019; 18:1054-1069. [PMID: 30850422 PMCID: PMC6553925 DOI: 10.1074/mcp.ra119.001380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/04/2019] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced macrophage activation is a prototype of innate immune response. Although key effector proteins in LPS signaling pathway have been revealed, the map of dynamic protein interactions and phosphorylation as well as the stoichiometry of protein complexes are lacking. Here we present a dynamic map of protein interactions and phosphorylation in MyD88, TRAF6 and NEMO complexes obtained by SWATH-MS. The comprehensive MS measurement leads to quantification of up to about 3,000 proteins across about 21-40 IP samples. We detected and quantified almost all known interactors of MyD88, TRAF6 and NEMO. By analyzing these quantitative data, we uncovered differential recruitment of IRAK family proteins to LPS-induced signaling complexes and determined the stoichiometry of the Myddosome complex. In addition, quantitative phosphoproteomics analysis identified a number of unreported high-confidence phosphosites on the key proteins in LPS signaling pathway. Collectively, data of dynamic protein interactions and phosphorylation presented by this study could be a resource for further study of the LPS signaling pathway.
Collapse
Affiliation(s)
- Xiurong Wu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Daowei Yang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Fu Zhao
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Zhang-Hua Yang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Dazheng Wang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Muzhen Qiao
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yuan Fang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Wanyun Li
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Rui Wu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Peng He
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yu Cong
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Chang'an Chen
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Lichen Hu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yihua Yan
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Changchuan Xie
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yaying Wu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Jiahuai Han
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Chuan-Qi Zhong
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| |
Collapse
|
54
|
Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front Immunol 2019; 10:1176. [PMID: 31178872 PMCID: PMC6543449 DOI: 10.3389/fimmu.2019.01176] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE). The C-terminal part contains the IRF-association domain (IAD), with which they can self-associate, bind to IRF family members or interact with other transcription factors. This complex formation is crucial for DNA binding and the commencing of target-gene expression. IRFs bind DNA and exert their activating potential as homo or heterodimers with other IRFs. Moreover, they can form complexes (e.g., with Signal transducers and activators of transcription, STATs) and collaborate with other co-acting transcription factors such as Nuclear factor-κB (NF-κB) and PU.1. In time, more of these IRF co-activating mechanisms have been discovered, which may play a key role in the pathogenesis of many diseases, such as acute and chronic inflammation, autoimmune diseases, and cancer. Detailed knowledge of IRFs structure and activating mechanisms predisposes IRFs as potential targets for inhibition in therapeutic strategies connected to numerous immune system-originated diseases. Until now only indirect IRF modulation has been studied in terms of antiviral response regulation and cancer treatment, using mainly antisense oligonucleotides and siRNA knockdown strategies. However, none of these approaches so far entered clinical trials. Moreover, no direct IRF-inhibitory strategies have been reported. In this review, we summarize current knowledge of the different IRF-mediated transcriptional regulatory mechanisms and how they reflect the diverse functions of IRFs in homeostasis and in TLR and IFN signaling. Moreover, we present IRFs as promising inhibitory targets and propose a novel direct IRF-modulating strategy employing a pipeline approach that combines comparative in silico docking to the IRF-DBD with in vitro validation of IRF inhibition. We hypothesize that our methodology will enable the efficient identification of IRF-specific and pan-IRF inhibitors that can be used for the treatment of IRF-dependent disorders and malignancies.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bart Krist
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Sajek
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Plens-Galaska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
55
|
Interferon regulatory factor 3 plays a role in macrophage responses to interferon-γ. Immunobiology 2019; 224:565-574. [PMID: 31072630 DOI: 10.1016/j.imbio.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
IFN-γ produced during viral infections activates the IFN-γ receptor (IFNGR) complex for STAT1 transcriptional activity leading to expression of Interferon Regulatory Factors (IRF). Simultaneous activation of TBK/IKKε via TLR3 during viral infections activates the transcription factor IRF3. Together these transcription factors contributes to expression of intracellular proteins (e.g. ISG49, ISG54) and secreted proteins (e.g. IFN-β, IP-10, IL-15) that are essential to innate antiviral immunity. Here we examined the role of IRF3 in expression of innate anti-viral proteins produced in response to IFN-γ plus TLR3 agonist. Wild-type (WT) and IRF3KO RAW264.7 cells, each with ISG54-promoter-luciferase reporter vectors, were stimulated with IFN-γ, poly I:C, or both together. ISG54 promoter activity was significantly reduced in IRF3KO RAW264.7 cells responding to IFN-γ, poly I:C, or IFN-γ plus poly I:C, compared with WT RAW264.7 cells. These data were confirmed with western blot and qRT-PCR. Primary macrophages and dendritic cells (DCs) from IRF3KO mice also showed decreased ISG54 in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C compared with those from WT mice. Moreover, pharmacological inhibition of TBK/IKKε significantly reduced ISG54 promoter activity in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C. Similarly, expression of ISG49 and IL-15, but not IP-10, was impaired in IRF3KO RAW264.7 cells responding to IFN-γ or poly I:C, which also had impaired STAT1 phosphorylation and IRF1 expression. These data show that IRF3 contributes to IFN-γ/IFNGR signaling for expression of innate anti-viral proteins in macrophages.
Collapse
|
56
|
Guan XL, Zhang BC, Sun L. pol-miR-194a of Japanese flounder (Paralichthys olivaceus) suppresses type I interferon response and facilitates Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:220-225. [PMID: 30641186 DOI: 10.1016/j.fsi.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that participate in diverse cellular processes including microbial invasion and immune defense. In a previous study, we identified a large amount of Japanese flounder (Paralichthys olivaceus) miRNAs responsive to megalocytivirus infection. In the present study, we examined the function of one of these miRNAs, pol-miR-194a, in association with the infectivity of Edwardsiella tarda, an intracellular bacterial pathogen to many fish species including flounder. We found that pol-miR-194a was induced in expression to a significant extent in the spleen, liver, and gill of Japanese flounder infected by E. tarda. Transfection of flounder cells with pol-miR-194a mimic significantly enhanced the intracellular replication of E. tarda. pol-miR-194a was able to interact specifically with the 3'UTR of IRF7 in a negative manner, resulting in inhibition of IRF7 expression. Consistently, pol-miR-194a significantly blocked the promoter activity of type Ⅰ interferon. Taken together, these results indicate that pol-miR-194a plays an important role in the regulation of flounder immune response as well as microbial infection, and that pol-miR-194a probably serves as a target for E. tarda to manipulate and escape host immune defense.
Collapse
Affiliation(s)
- Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Cun Zhang
- Department of Biomedicine and Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
57
|
Lai CY, Yu GY, Luo Y, Xiang R, Chuang TH. Immunostimulatory Activities of CpG-Oligodeoxynucleotides in Teleosts: Toll-Like Receptors 9 and 21. Front Immunol 2019; 10:179. [PMID: 30800129 PMCID: PMC6375897 DOI: 10.3389/fimmu.2019.00179] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that detect a wide variety of microbial pathogens for the initiation of host defense immunological responses. Thirteen TLRs have been identified in mammals, and teleosts contain 22 mammalian or non-mammalian TLRs. Of these, TLR9 and TLR21 are the cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) recognition TLRs in teleosts. TLR9 is a mammalian TLR expressed in teleost but not in the avian species. TLR21 is a non-mammalian TLR expressed in both teleost and the avian species. Synthetic CpG-ODNs are potent immunostimulants that are being studied for their application against tumors, allergies, and infectious diseases, and as a vaccine adjuvant in humans. The immunostimulatory effects of CpG-ODNs as vaccine adjuvants and their antimicrobial function in domestic animals and teleosts are also being investigated. Most of our current knowledge about the molecular basis for the immunostimulatory activity of CpG-ODNs comes from earlier studies of the interaction between CpG-ODN and TLR9. More recent studies indicate that in addition to TLR9, TLR21 is another receptor for CpG-ODN recognition in teleosts to initiate immune responses. Whether these two receptors have differential functions in mediating the immunostimulatory activity of CpG-ODN in teleost has not been well-studied. Nevertheless, the existence of two recognition TLRs suggests that the molecular basis for the immunostimulatory activity of CpG-ODN in teleosts is different and more complex than in mammals. This article reviews the current knowledge of TLR9 and TLR21 activation by CpG-ODNs. The key points that need to be considered for CpG-ODNs as immunostimulants with maximum effectiveness in activation of immune responses in teleosts are discussed. This includes the structure/activity relationship of CpG-ODN activities for TLR9 and TLR21, the structure/functional relationship of these two TLRs, and differential expression levels and tissue distributions for these two TLRs.
Collapse
Affiliation(s)
- Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yunping Luo
- Deptartment of Immunology, Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Science, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
58
|
Thompson CD, Matta B, Barnes BJ. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front Immunol 2018; 9:2622. [PMID: 30515152 PMCID: PMC6255967 DOI: 10.3389/fimmu.2018.02622] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The interferon regulatory factors (IRFs) are a family of master transcription factors that regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF signaling pathways due to infection, genetic predisposition and/or mutation, which can lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs), and other pro-inflammatory cytokines/chemokines, has been linked to the development of numerous diseases, including (but not limited to) autoimmune and cancer. What is currently lacking in the field is an understanding of how best to therapeutically target these transcription factors. Many IRFs are regulated by post-translational modifications downstream of pattern recognition receptors (PRRs) and some of these modifications lead to activation or inhibition. We and others have been able to utilize structural features of the IRFs in order to generate dominant negative mutants that inhibit function. Here, we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a candidate targeting molecule.
Collapse
Affiliation(s)
- Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
59
|
Antimicrobial and proinflammatory effects of two vipericidins. Cytokine 2018; 111:309-316. [DOI: 10.1016/j.cyto.2018.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|
60
|
Zhou B, Weng G, Huang Z, Liu T, Dai F. Arctiin Prevents LPS-Induced Acute Lung Injury via Inhibition of PI3K/AKT Signaling Pathway in Mice. Inflammation 2018; 41:2129-2135. [DOI: 10.1007/s10753-018-0856-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
61
|
Mubarak RA, Roberts N, Mason RJ, Alper S, Chu HW. Comparison of pro- and anti-inflammatory responses in paired human primary airway epithelial cells and alveolar macrophages. Respir Res 2018; 19:126. [PMID: 29940963 PMCID: PMC6020222 DOI: 10.1186/s12931-018-0825-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Background Airway epithelial cells and alveolar macrophages (AMs) are the first line of defense in the lung during infection. Toll-like receptor (TLR) agonists have been extensively used to define the regulation of inflammation in these cells. However, previous studies were performed in non-paired airway epithelial cells and AMs. The major goal of our study was to compare the pro- and anti-inflammatory responses of paired human primary airway epithelial cells and AMs to TLR3 and TLR4 agonists. Methods Tracheobronchial epithelial cells (TBEC) and AMs from four smokers and four non-smokers without lung disease were cultured with or without Poly(I:C) (PIC) (a TLR3 agonist) or LPS (a TLR4 agonist) for 4, 24 and 48 h. The immune responses of paired cells were compared. Results TBEC and AMs showed stronger pro-inflammatory cytokine (e.g., IL-8) responses to PIC and LPS, respectively. TLR3 and TLR4 mRNA levels were similar in non-stimulated TBEC and AMs. However, PIC stimulation in AMs led to sustained up-regulation of the immune negative regulators Tollip and A20, which may render AMs less sensitive to PIC stimulation than TBEC. Unlike AMs, TBEC did not increase NF-κB activation after LPS stimulation. Interestingly, smoking status was correlated with less TLR3 and IRAK-M expression in non-stimulated TBEC, but not in AMs. PIC-stimulated TBEC and LPS-stimulated AMs from smokers vs. non-smokers produced more IL-8. Finally, we show that expression of A20 and IRAK-M is strongly correlated in the two paired cell types. Conclusions By using paired airway epithelial cells and AMs, this study reveals how these two critical types of lung cells respond to viral and bacterial pathogen associated molecular patterns, and provides rationale for modulating immune negative regulators to prevent excessive lung inflammation during respiratory infection. Electronic supplementary material The online version of this article (10.1186/s12931-018-0825-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reem Al Mubarak
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Nicole Roberts
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Robert J Mason
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Scott Alper
- Department of Biomedical Research and Center for Genes, Environment, and Health, National Jewish Health, University of Colorado, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Immunology and Microbiology, University of Colorado, 1400 Jackson Street, Denver, CO, 80206, USA.
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA.
| |
Collapse
|
62
|
Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation. J Neuroinflammation 2018; 15:130. [PMID: 29720226 PMCID: PMC5930864 DOI: 10.1186/s12974-018-1143-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/02/2018] [Indexed: 01/26/2023] Open
Abstract
Background Chronic pro-inflammatory signaling propagates damage to neural tissue and affects the rate of disease progression. Increased activation of Toll-like receptors (TLRs), master regulators of the innate immune response, is implicated in the etiology of several neuropathologies including amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. Previously, we identified that the Bcl-2 family protein BH3-interacting domain death agonist (Bid) potentiates the TLR4-NF-κB pro-inflammatory response in glia, and specifically characterized an interaction between Bid and TNF receptor associated factor 6 (TRAF6) in microglia in response to TLR4 activation. Methods We assessed the activation of mitogen-activated protein kinase (MAPK) and interferon regulatory factor 3 (IRF3) inflammatory pathways in response to TLR3 and TLR4 agonists in wild-type (wt) and bid-deficient microglia and macrophages, using Western blot and qPCR, focusing on the response of the E3 ubiquitin ligases Pellino 1 (Peli1) and TRAF3 in the absence of microglial and astrocytic Bid. Additionally, by Western blot, we investigated the Bid-dependent turnover of Peli1 and TRAF3 in wt and bid−/− microglia using the proteasome inhibitor Bortezomib. Interactions between the de-ubiquitinating Smad6-A20 and the E3 ubiquitin ligases, TRAF3 and TRAF6, were determined by FLAG pull-down in TRAF6-FLAG or Smad6-FLAG overexpressing wt and bid-deficient mixed glia. Results We elucidated a positive role of Bid in both TIR-domain-containing adapter-inducing interferon-β (TRIF)- and myeloid differentiation primary response 88 (MyD88)-dependent pathways downstream of TLR4, concurrently implicating TLR3-induced inflammation. We identified that Peli1 mRNA levels were significantly reduced in PolyI:C- and lipopolysaccharide (LPS)-stimulated bid-deficient microglia, suggesting disturbed IRF3 activation. Differential regulation of TRAF3 and Peli1, both essential E3 ubiquitin ligases facilitating TRIF-dependent signaling, was observed between wt and bid−/− microglia and astrocytes. bid deficiency resulted in increased A20-E3 ubiquitin ligase protein interactions in glia, specifically A20-TRAF6 and A20-TRAF3, implicating enhanced de-ubiquitination as the mechanism of action by which E3 ligase activity is perturbed. Furthermore, Smad6-facilitated recruitment of the de-ubiquitinase A20 to E3-ligases occurred in a bid-dependent manner. Conclusions This study demonstrates that Bid promotes E3 ubiquitin ligase-mediated signaling downstream of TLR3 and TLR4 and provides further evidence for the potential of Bid inhibition as a therapeutic for the attenuation of the robust pro-inflammatory response culminating in TLR activation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1143-3) contains supplementary material, which is available to authorized users.
Collapse
|
63
|
Ahmed W, Liu ZF. Long Non-Coding RNAs: Novel Players in Regulation of Immune Response Upon Herpesvirus Infection. Front Immunol 2018; 9:761. [PMID: 29706968 PMCID: PMC5906719 DOI: 10.3389/fimmu.2018.00761] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses have developed a variety of sophisticated immune evasion strategies to establish lifelong latent infection, including the use of long non-coding RNAs (lncRNAs). In this review, we summarize the lncRNA action modes, i.e., RNA-protein, RNA-RNA, and RNA-DNA interactions, involved in regulating important aspects of immunity by controlling gene expression at various stages. Upon herpesvirus infection, host lncRNAs, such as nuclear paraspeckle assembly transcript 1, negative regulator of antiviral, and B-cell integration cluster have been functionally characterized as negative or positive antiviral regulators in the immune response. Herpesviruses have also evolved multiple strategies to modulate the host immune response using lncRNAs, such as latency-associated transcript, β 2.7 RNA, 5 kb and 7.2 kb lncRNAs, Epstein-Barr virus-encoded non-coding RNA, BamH I-A rightward transcripts, polyadenylated nuclear, and herpesvirus saimiri U-rich RNAs. We discuss the various mechanisms of immune-related lncRNAs, and their diversified and important functions in the modulation of innate and adaptive immunity upon herpesvirus infection as well as in host-pathogen interactions, which will facilitate our understanding of rational design of novel strategies to combat herpesvirus infection.
Collapse
Affiliation(s)
- Waqas Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
64
|
Wang M, Wang L, Jia Z, Yi Q, Song L. The various components implied the diversified Toll-like receptor (TLR) signaling pathway in mollusk Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2018; 74:205-212. [PMID: 29305991 DOI: 10.1016/j.fsi.2017.12.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/25/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptor (TLR) signaling pathway, composed of various components, plays pivotal roles in host innate immune defense mechanism. In the present study, twenty-nine TLR signaling pathway components, including receptors, adaptors, transduction molecules and immune effectors, were identified in Zhikong scallop Chlamys farreri via assembling and screening public available transcriptomic data and expression sequence tags (ESTs). These identified TLR signaling pathway components were constitutively expressed and detectable in various tissues, and almost all of them were highly expressed in gill and hepatopancreas. These results indicated the presence of TLR signaling pathways in both MyD88-dependent and MyD88-independent forms in scallop, and implied the diversified TLR signaling pathway in mollusk C. farreri.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
65
|
Hao B, Chen Z, Bi B, Yu M, Yao S, Feng Y, Yu Y, Pan L, Di D, Luo G, Zhang X. Role of TLR4 as a prognostic factor for survival in various cancers: a meta-analysis. Oncotarget 2018; 9:13088-13099. [PMID: 29560134 PMCID: PMC5849198 DOI: 10.18632/oncotarget.24178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Accumulating evidence showed that high expression of toll like receptor 4 (TLR4) was significantly associated with the outcome of patients with solid cancers. However, other studies failed to draw a similar conclusion. Thus, a systematic meta-analysis was performed to assess the prognostic value of TLR4 in solid tumors. RESULTS Data from 15 studies and 1294 patients were enrolled. Among the 15 studies, 14 studies demonstrated the association between overall survival(OS) and TLR4 expression, and 7 studies described the relationship between disease-free survival(DFS) and TLR4 expression. High expression of TLR4 was significantly associated with poor OS (pooled hazard ratio (HR) = 2.05; 95% confidence interval (CI) (1.49, 2,49), P < 0.001). The results of meta regression analysis indicated that the subgroups of ethnic (PD = 0.924), tumor type (PD = 0.669), HR obtained method (PD = 0.945), analysis type (PD = 0.898), and cut-off value(PD = 0.835) were not the resource of heterogeneity. Moreover, patients with elevated TLR4 had a significantly worse DFS (pooled HR = 1.79; 95% CI (1.11, 2.88), P < 0.05). MATERIALS AND METHODS We searched PubMed, Embase and the Cochrane Library (last update by April 18, 2017) to identify literatures evaluating the value of TLR4 in cancer patients. Combined hazard ratios (HRs) for OS and DFS were assessed using fixed-effects models and random effects models respectively. CONCLUSIONS The meta-analysis suggests that elevated expression of TLR4 is associated with poor OS and shorter DFS of patients with solid tumors. The results indicate that TLR4, as a novel prognostic biomarker in solid tumors, could potentially help to improve treatment decision-making of solid tumors in clinical.
Collapse
Affiliation(s)
- Bo Hao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Baochen Bi
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Miaomei Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Shuang Yao
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Yuehua Feng
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Yang Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Lili Pan
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
66
|
Ptaschinski C, Lukacs NW. Acute and Chronic Inflammation Induces Disease Pathogenesis. MOLECULAR PATHOLOGY 2018:25-43. [DOI: 10.1016/b978-0-12-802761-5.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
67
|
Choi MJ, Park JS, Park JE, Kim HS, Kim HS. Galangin Suppresses Pro-Inflammatory Gene Expression in Polyinosinic-Polycytidylic Acid-Stimulated Microglial Cells. Biomol Ther (Seoul) 2017; 25:641-647. [PMID: 29081092 PMCID: PMC5685434 DOI: 10.4062/biomolther.2017.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
Galangin (3,5,7-trihydroxyflavone) is a polyphenolic compound abundant in honey and medicinal herbs, such as Alpinia officinarum. In this study, we investigated the anti-inflammatory effects of galangin under in vitro and in vivo neuroinflammatory conditions caused by polyinosinic-polycytidylic acid (poly(I:C)), a viral mimic dsRNA analog. Galangin suppressed the production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in poly(I:C)-stimulated BV2 microglia. On the other hand, galangin enhanced anti-inflammatory interleukin (IL)-10 production. Galangin also suppressed the expression of pro-inflammatory markers in poly(I:C)-injected mouse brains. Further mechanistic studies showed that galangin inhibited poly(I:C)-induced nuclear factor (NF)-κB activity and phosphorylation of Akt without affecting MAP kinases. Interestingly, galangin increased the expression and transcriptional activity of peroxisome proliferator-activated receptor (PPAR)-γ, known to play an anti-inflammatory role. To investigate whether PPAR-γ is involved in the anti-inflammatory function of galangin, BV2 cells were pre-treated with PPAR-γ antagonist before treatment of galangin. We found that PPAR-γ antagonist significantly blocked galangin-mediated upregulation of IL-10 and attenuated the inhibition of tumor necrosis factor (TNF)-α and IL-6 in poly(I:C)-stimulated microglia. In conclusion, our data suggest that PI3K/Akt, NF-κB, and PPAR-γ play a pivotal role in mediating the anti-inflammatory effects of galangin in poly(I:C)-stimulated microglia.
Collapse
Affiliation(s)
- Min-Ji Choi
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Jin-Sun Park
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Jung-Eun Park
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| |
Collapse
|
68
|
Huang Y, Zhang C, Shen J, Zhang X, Du J, Zhang D. WITHDRAWN: Toll-like receptor-4 Signaling Improved the Migration of Sca-1 +stem/progenitor Cells. Ann Vasc Surg 2017:S0890-5096(16)31397-8. [PMID: 28739472 DOI: 10.1016/j.avsg.2017.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Ying Huang
- Dept of Cardiology, Pudong New Area People' Hospital, Shanghai, 200120, China
| | - Chunya Zhang
- Dept of Cardiology, Pudong New Area People' Hospital, Shanghai, 200120, China
| | - Jinghua Shen
- Dept of Cardiology, Pudong New Area People' Hospital, Shanghai, 200120, China
| | - Xiaogang Zhang
- Dept of Cardiology, Pudong New Area People' Hospital, Shanghai, 200120, China
| | - Jianqing Du
- Dept of Cardiology, Pudong New Area People' Hospital, Shanghai, 200120, China
| | - Daifu Zhang
- Dept of Cardiology, Pudong New Area People' Hospital, Shanghai, 200120, China
| |
Collapse
|
69
|
Hou A, Tin MQ, Tong L. Toll-like receptor 2-mediated NF-kappa B pathway activation in ocular surface epithelial cells. EYE AND VISION 2017; 4:17. [PMID: 28706958 PMCID: PMC5506675 DOI: 10.1186/s40662-017-0082-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/27/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gram-positive bacteria stimulate Toll-like receptor (TLR) 2 and then activate the pro-inflammatory nuclear factor-kappa B (NF-κB) pathway. As the human ocular surface is heavily colonised by gram-positive cocci bacteria, a balance of activation/repression of NF-κB target genes is essential to avoid uncontrolled infection or autoimmune-related inflammation. It is advantageous to test NF-κB targeting molecules in an ocular surface culture system that allows assessment of temporal NF-κB activation in a longitudinal fashion without destruction of cells. Such initial testing under standardised conditions should reduce the number of molecules that progress to further evaluation in animal models. This study aims to establish an in-vitro cell culture system to assess NF-κB activation in the context of ocular surface cells. METHODS NF-κB activity was evaluated through a secretory alkaline phosphatase reporter assay (SEAP). Immunoblots and immunofluorescence were used to examine IκBα phosphorylation and p65/p50 nuclear localization. Monocyte chemoattractant protein-1 (MCP-1) transcripts were evaluated by real time PCR and protein levels were measured by ELISA. RESULTS NF-κB activity in HCE-T cells treated with TLR2 activator Pam3CSK4 was higher than control cells at both 6 and 24 h. Pam3CSK4-stimulated NF-κB activation was inhibited by IκK inhibitors, Wedelolactone and BMS-345541. In Pam3CSK4 treated cells, active NF-κB subunits p50 and p65 increased in cell nuclear fractions as early as 1.5 h. Although the level of total IκB-α remained constant, phospho-IκB-α increased with treatment over time. In the culture media of Pam3CSK4-stimulated cells, MCP-1 protein level was increased, which was suppressed in the presence of IκK inhibitors. CONCLUSION NF-κB pathway can be activated by the TLR2 ligand and inhibited by IκK inhibitors in the ocular surface cell culture system. This cell culture system may be used to evaluate TLR-related innate defences in ocular surface diseases.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Min Qi Tin
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Singapore National Eye Center, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
70
|
Zeng XY, Yuan W, Zhou L, Wang SX, Xie Y, Fu YJ. Forsythoside A exerts an anti-endotoxin effect by blocking the LPS/TLR4 signaling pathway and inhibiting Tregs in vitro. Int J Mol Med 2017; 40:243-250. [DOI: 10.3892/ijmm.2017.2990] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
|
71
|
Saas P, Varin A, Perruche S, Ceroi A. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions. F1000Res 2017; 6:456. [PMID: 28580131 PMCID: PMC5437952 DOI: 10.12688/f1000research.11332.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC), another type of innate immune cells. These cells are the main type I interferon (IFN) producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6) or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β). Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis), as well as lipid metabolism (including both cholesterol and fatty acid metabolism) may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR) 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR]) in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment) in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor) may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations where PDC play a detrimental role.
Collapse
Affiliation(s)
- Philippe Saas
- EFS Bourgogne Franche-Comté, Université Bourgogne Franche-Comté, Inserm, UMR1098, Besançon, F-25000, France
| | - Alexis Varin
- EFS Bourgogne Franche-Comté, Université Bourgogne Franche-Comté, Inserm, UMR1098, Besançon, F-25000, France
| | - Sylvain Perruche
- EFS Bourgogne Franche-Comté, Université Bourgogne Franche-Comté, Inserm, UMR1098, Besançon, F-25000, France
| | - Adam Ceroi
- EFS Bourgogne Franche-Comté, Université Bourgogne Franche-Comté, Inserm, UMR1098, Besançon, F-25000, France.,The Center for Cell Clearance, University of Virginia, Charlottesville, VA, 22903, USA
| |
Collapse
|
72
|
Saas P, Varin A, Perruche S, Ceroi A. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions. F1000Res 2017; 6:456. [DOI: 10.12688/f1000research.11332.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC), another type of innate immune cells. These cells are the main type I interferon (IFN) producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6) or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β). Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases. Recent data support the idea that the glycolytic pathway (or glycolysis), as well as lipid metabolism (including both cholesterol and fatty acid metabolism) may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR) 7/9 triggering. Some differences may be related to the origin of PDC (human versus mouse PDC or blood-sorted versus FLT3 ligand stimulated-bone marrow-sorted PDC). The kinetics of glycolysis may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR, explaining a delayed glycolysis. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR]) in PDC or through limiting intracellular cholesterol pool size (by statins or LXR agonists) in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor) may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations where PDC play a detrimental role.
Collapse
|
73
|
Jin CJ, Engstler AJ, Ziegenhardt D, Bischoff SC, Trautwein C, Bergheim I. Loss of lipopolysaccharide-binding protein attenuates the development of diet-induced non-alcoholic fatty liver disease in mice. J Gastroenterol Hepatol 2017; 32:708-715. [PMID: 27404046 DOI: 10.1111/jgh.13488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM It has been suggested in several studies that an increased translocation of bacterial lipopolysaccharide (LPS) and, subsequently, an activation of toll-like receptor (TLR)-dependent signaling pathways in the liver may contribute to the development of non-alcoholic fatty liver disease. METHODS Eight-week-old lipopolysaccharide-binding protein (LBP)-/- and wild-type (WT) mice were pair fed either a liquid diet rich in fat, fructose, and cholesterol (Western-style diet [WSD]) or a control liquid diet for 8 weeks. Parameters of liver injury, markers of TLR-4-dependent signaling pathway, and glucose/lipid metabolism were determined. RESULTS Despite similar total caloric intake, weight gain, fasting blood glucose levels, and liver-to-bodyweight ratio, indices of liver damage determined by liver histology and transaminases were markedly lower in WSD-fed LBP-/- mice than in WSD-fed WT animals. In line with these findings, number of neutrophils, F4/80 positive cells, and plasminogen activator inhibitor 1 were only found to be significantly increased in livers of WSD-fed WT mice. While mRNA expressions of TLR-4 and myeloid differentiation primary response 88 were similar between WSD-fed groups, concentrations of inducible nitric oxide synthase protein and 4-hydroxynonenal protein adducts were significantly higher in livers of WSD-fed WT mice than in WSD-fed LBP-/- animals. Markers of lipid metabolism, for example, sterol regulatory element-binding protein 1c and fatty acid synthase per se, were significantly lower in livers of LBP-/- mice; however, mRNA expressions did not differ between controls and WSD-fed mice within the respective mouse strain. CONCLUSION Taken together, our results suggest that LBP is a critical factor in the development of non-alcoholic fatty liver disease in mice.
Collapse
Affiliation(s)
- Cheng Jun Jin
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Anna Janina Engstler
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Doreen Ziegenhardt
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christian Trautwein
- Department of Gastroenterology, Metabolic Diseases and Internal Intensive Medicine (Med. Clinic III), University Hospital RWTH Aachen, Aachen, Germany
| | - Ina Bergheim
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
74
|
Sprokholt J, Helgers LC, Geijtenbeek TBH. Innate immune receptors drive dengue virus immune activation and disease. Future Virol 2017; 13:287-305. [PMID: 29937918 PMCID: PMC6004600 DOI: 10.2217/fvl-2017-0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022]
Abstract
Dengue is a worldwide disease with 400 million annual infections that can lead to septic shock and viral hemorrhagic fever with internal bleeding. These symptoms are the result of uncontrolled immune activation. Macrophages and dendritic cells are the main target of dengue virus (DENV) and the cellular source of cytokines associated with this immune activation. Macrophages and dendritic cells express several innate immune receptors that have been implicated in DENV immune activation, of which, CLEC5A, RIG-I and MDA5 are most important. Notably, activation of these receptors have profound effects on adaptive immune responses against DENV. This review will focus on how innate immune receptors drive DENV immune activation by inducing inflammatory cytokines and by activating adaptive immune responses.
Collapse
Affiliation(s)
- Joris Sprokholt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, AMC, VUmc, Amsterdam, The Netherlands
| | - Leanne C Helgers
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, AMC, VUmc, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, AMC, VUmc, Amsterdam, The Netherlands
| |
Collapse
|
75
|
Samanta M, Basu M, Swain B, Paichha M, Lenka SS, Das S, Jayasankar P, Maiti NK. Molecular cloning and characterization of LrTLR4, analysis of its inductive expression and associated down-stream signaling molecules following lipopolysaccharide stimulation and Gram-negative bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2017; 60:164-176. [PMID: 27838566 DOI: 10.1016/j.fsi.2016.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) play key roles in innate immunity from lower to higher vertebrates. Among various TLR types, TLR4 was reported to recognize LPS in higher vertebrates resulting in the activation of down-stream signaling pathway. Except in some teleosts, function of TLR4 in most fish species including rohu (Labeo rohita) a commercially important fish species in the South-East Asian countries remained unknown. To investigate it, full-length cDNA of Labeo rohita TLR4 (LrTLR4) was cloned, and it consisted of 2729 bp, with a single ORF of 2469 bp encoding a polypeptide of 822 aa with a predicted molecular mass of 94.753 kDa. Structurally, LrTLR4 consisted of 25 LRRs (leucine rich repeat regions), one TM (trans-membrane) domain and one TIR (Toll/interleukin-1 receptor) domain, and was similar to higher vertebrate's TLR4. Phylogenetically, LrTLR4 exhibited highest (85%) identity with the common carp TLR4b amino acids sequence, and formed a separate subgroup in the phylogenetic tree. LrTLR4 was widely expressed in all tested organs/tissues, and amidst the tissues highest expression was detected in blood and the lowest in eye. In response to LPS-stimulation, LrTLR4 was induced with the activation of MyD88-dependent and TRIF-dependent signaling pathway resulting in pro-inflammatory cytokines (interleukin 6 and 8) and type I IFN gene expression. Infection of rohu with a Gram-negative fish pathogen (Aeromonas hydrophila), also activated LrTLR4. Together, these findings suggest the important role of TLR4 in LPS sensing and augmentation of innate immunity against Gram-negative bacterial infection in fish.
Collapse
Affiliation(s)
- Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India.
| | - Madhubanti Basu
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Banikalyan Swain
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Mahismita Paichha
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Saswati S Lenka
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Pallipuram Jayasankar
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Nikhil Kumar Maiti
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| |
Collapse
|
76
|
Wei X, Qian W, Sizhu S, Shi L, Jin M, Zhou H. Molecular cloning and functional analysis of the duck TIR domain-containing adaptor inducing IFN-β (TRIF) gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:369-376. [PMID: 27539203 DOI: 10.1016/j.dci.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) trigger the innate immune response by responding to specific components of microorganisms. The TIR domain-containing adaptor inducing IFN-β (TRIF) plays an essential role in mammalian TLR-mediated signaling. The role of TRIF in ducks (duTRIF) remains poorly understood. In this study, we cloned and characterized the full-length coding sequence of duTRIF from duck embryo fibroblasts (DEFs). In healthy ducks, duTRIF transcripts were broadly expressed in different tissues, with higher expression levels in the spleen and liver. Using quantitative real-time PCR (qRT-PCR), we demonstrated the upregulation of duTRIF in DEFs infected with AIV or DTMUV, and DEFs treated with Poly I:C or LPS. Overexpression of duTRIF was able to induce the NF-κB and IFN-β expression. Furthermore, the IFN induction function of duTRIF was impaired when Ala517 was mutated to Pro or His. Taken together, these results suggested that duTRIF regulated duck innate immune responses.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Wei Qian
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Suolang Sizhu
- College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Lijuan Shi
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Meilin Jin
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
77
|
Nhu QM, Cuesta N, Vogel SN. Transcriptional regulation of lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) expression in murine macrophages: role of interferon regulatory factors 1 (IRF-1) and 2 (IRF-2). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120050401] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of TLRs is most closely associated with induction of pro-inflammatory gene expression; however, expression of many other genes, including the TLR genes themselves, has also been shown to be modulated following TLR engagement. A large family of nuclear transcription factors, the interferon regulatory factors (IRFs), have been implicated in TLR signaling leading to pro-inflammatory gene expression. Given that IRF-1 and IRF-2 counter-regulate the transcriptional activity of many genes, we hypothesized that IRF-1 and IRF-2 might also regulate TLR gene expression following LPS stimulation of murine macrophages. mRNA derived from medium- or LPS-treated primary peritoneal macrophages was analyzed for TLR gene expression using quantitative real-time PCR. In wild-type macrophages, LPS up-regulated expression of TLRs 1—3 and 6—9 steady-state mRNA, while TLR4 mRNA was modestly downregulated. IRF-2—/ — macrophages responded to LPS with dysregulated expression of TLR3, TLR4, and TLR5 mRNA, whereas IRF-1 deficiency dampened LPS-induced mRNA expression for TLR3, TLR6, and TLR9. Functional studies revealed aberrant TLR3 signaling in IRF-2—/ — macrophages. Collectively, these findings reveal an additional level of complexity associated with TLR transcriptional regulation and suggest that the trans-acting factors, IRF-1 and IRF-2, contribute to the innate immune response to infections by regulating TLR gene expression.
Collapse
Affiliation(s)
- Quan M. Nhu
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - Natalia Cuesta
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
78
|
Pattabiraman G, Palasiewicz K, Ucker DS. Toll-like Receptor function of murine macrophages, probed by cytokine induction, is biphasic and is not impaired globally with age. Mech Ageing Dev 2016; 157:44-59. [PMID: 27453067 DOI: 10.1016/j.mad.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/08/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023]
Abstract
Aging is associated with a waning of normal immune function. This "immunosenescence" is characterized by a diverse repertoire of seemingly discreet and unbalanced immune alterations. A number of studies have suggested that aging-associated alterations in innate immune responsiveness, especially responsiveness dependent on Toll-like Receptor (TLR) engagement, are causally involved. We find, however, that the magnitude and dose-dependency of responsiveness to TLR engagement (assessed with respect to cytokine production) in distinct populations of murine macrophages are not altered generally with animal age or as a consequence of immunosenescence. Responses elicited with a wide array of TLR agonists were examined by extensive functional analyses, principally on the level of the individual cell. These studies reveal an intriguing "all-or-nothing" response behavior of macrophages, independent of animal age. Although reports to the contrary have been cited widely, aging-associated immune decline cannot be attributed to widespread alterations in the extents of TLR-dependent innate immune macrophage responses.
Collapse
Affiliation(s)
- Goutham Pattabiraman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, United States.
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, United States
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, United States.
| |
Collapse
|
79
|
Barry A, Cronin O, Ryan AM, Sweeney B, Yap SM, O'Toole O, Allen AP, Clarke G, O'Halloran KD, Downer EJ. Impact of Exercise on Innate Immunity in Multiple Sclerosis Progression and Symptomatology. Front Physiol 2016; 7:194. [PMID: 27313534 PMCID: PMC4889582 DOI: 10.3389/fphys.2016.00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple Sclerosis (MS), an idiopathic progressive immune-mediated neurological disorder of the central nervous system (CNS), is characterized by recurrent episodes of inflammatory demyelination and consequent axonal deterioration. It accounts for functional deterioration and lasting disability among young adults. A body of literature demonstrates that physical activity counteracts fatigue and depression and may improve overall quality of life in MS patients. Furthermore, much data indicates that exercise ameliorates chronic neuroinflammation and its related pathologies by tipping cytokine profiles toward an anti-inflammatory signature. Recent data has focused on the direct impact of exercise training on the innate immune system by targeting toll-like receptors (TLRs), signaling pattern recognition receptors that govern the innate immune response, shedding light on the physiological role of TLRs in health and disease. Indeed, TLRs continue to emerge as players in the neuroinflammatory processes underpinning MS. This review will highlight evidence that physical activity and exercise are potential immunomodulatory therapies, targeting innate signaling mechanism(s) to modulate MS symptom development and progression.
Collapse
Affiliation(s)
- Alison Barry
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - Owen Cronin
- Department of Medicine, Cork University Hospital Cork, Ireland
| | - Aisling M Ryan
- Department of Neurology, Cork University Hospital Cork, Ireland
| | - Brian Sweeney
- Department of Neurology, Cork University Hospital Cork, Ireland
| | | | | | - Andrew P Allen
- Department of Psychiatry and Neurobehavioral Science, APC Microbiome Institute, University College Cork Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, APC Microbiome Institute, University College Cork Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - Eric J Downer
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin Dublin, Ireland
| |
Collapse
|
80
|
Elefanti L, Sacco G, Stagni C, Rastrelli M, Menin C, Russo I, Alaibac M. TLR7 Gln11Leu single nucleotide polymorphism and susceptibility to cutaneous melanoma. Oncol Lett 2016; 12:275-280. [PMID: 27347137 DOI: 10.3892/ol.2016.4584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
Cutaneous melanoma is a life-threatening skin cancer. Its incidence is rapidly increasing, and early diagnosis is the main factor able to improve its poor prognosis. Toll-like receptors (TLRs) are transmembrane glycoproteins that recognize pathogen- and damage-associated molecular patterns, against which TLRs activate the innate immune response and initiate the adaptive immune response. Genetic variations of these receptors may alter the immune system, and are involved in evolution and susceptibility to various diseases, including cancer. The aim of the present study was to evaluate whether the presence of TLR7 glutamine (Gln) 11 leucine (Leu) polymorphism confers an increased susceptibility to cutaneous melanoma. For that purpose, a case-control study was performed with 182 melanoma cases and 89 controls. To highlight the possible association between the aforementioned polymorphism and the susceptibility to melanoma, 93 cases of single melanoma and 89 cases of multiple primary melanoma (MPM) were compared in the present study. Since the TLR7 gene is localized on the chromosome X, the allelic frequency of the Gln11Leu polymorphism was analyzed separately in males and females. The distribution of allele frequencies between melanoma cases and controls (P=0.245) and between single melanoma and MPM cases (P=0.482) was not significant. Therefore, the present results do not suggest an association between TLR7 Gln11Leu polymorphism and susceptibility to cutaneous melanoma. Further studies are required to analyze the influence of other TLR polymorphisms on the susceptibility to malignant melanoma and the involvement of innate immunity in this malignancy.
Collapse
Affiliation(s)
- Lisa Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Scientific Institute for Hospitalization, Treatment and Research, Padua I-35128, Italy
| | - Giorgia Sacco
- Department of Medicine, Dermatology Unit, University of Padua, Padua I-35121, Italy
| | - Camilla Stagni
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Unit, University of Padua, Padua I-35100, Italy
| | - Marco Rastrelli
- Melanoma and Soft Tissue Sarcoma Unit, Veneto Institute of Oncology, Scientific Institute for Hospitalization, Treatment and Research, Padua I-35128, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Scientific Institute for Hospitalization, Treatment and Research, Padua I-35128, Italy
| | - Irene Russo
- Department of Medicine, Dermatology Unit, University of Padua, Padua I-35121, Italy
| | - Mauro Alaibac
- Department of Medicine, Dermatology Unit, University of Padua, Padua I-35121, Italy
| |
Collapse
|
81
|
Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54:260-277. [PMID: 26851553 DOI: 10.1016/j.bbi.2016.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Eric J Downer
- School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
82
|
Immune Surveillance of the CNS following Infection and Injury. Trends Immunol 2016; 36:637-650. [PMID: 26431941 DOI: 10.1016/j.it.2015.08.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) contains a sophisticated neural network that must be constantly surveyed in order to detect and mitigate a diverse array of challenges. The innate and adaptive immune systems actively participate in this surveillance, which is critical for the maintenance of CNS homeostasis and can facilitate the resolution of infections, degeneration, and tissue damage. Infections and sterile injuries represent two common challenges imposed on the CNS that require a prompt immune response. While the inducers of these two challenges differ in origin, the resultant responses orchestrated by the CNS share some overlapping features. Here, we review how the CNS immunologically discriminates between pathogens and sterile injuries, mobilizes an immune reaction, and, ultimately, regulates local and peripherally-derived immune cells to provide a supportive milieu for tissue repair.
Collapse
|
83
|
Fitzpatrick JMK, Downer EJ. Toll-like receptor signalling as a cannabinoid target in Multiple Sclerosis. Neuropharmacology 2016; 113:618-626. [PMID: 27079840 DOI: 10.1016/j.neuropharm.2016.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/20/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are the sensors of pathogen-associated molecules that trigger tailored innate immune intracellular signalling responses to initiate innate immune reactions. Data from the experimental autoimmune encephalomyelitis (EAE) model indicates that TLR signalling machinery is a pivotal player in the development of murine EAE. To compound this, data from human studies indicate that complex interplay exists between TLR signalling and Multiple Sclerosis (MS) pathogenesis. Cannabis-based therapies are in clinical development for the management of a variety of medical conditions, including MS. In particular Sativex®, a combination of plant-derived cannabinoids, is an oromucosal spray with efficacy in MS patients, particularly those with neuropathic pain and spasticity. Despite this, the precise cellular and molecular mechanisms of action of Sativex® in MS patients remains unclear. This review will highlight evidence that novel interplay exists between the TLR and cannabinoid systems, both centrally and peripherally, with relevance to the pathogenesis of MS. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- John-Mark K Fitzpatrick
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
84
|
MyD88 Polymorphisms and Association with Susceptibility to Salmonella Pullorum. BIOMED RESEARCH INTERNATIONAL 2015; 2015:692973. [PMID: 26881204 PMCID: PMC4735975 DOI: 10.1155/2015/692973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/09/2015] [Accepted: 12/20/2015] [Indexed: 02/02/2023]
Abstract
Myeloid differentiation primary response gene 88 (MYD88), a universal adapter protein, plays an important role in activating the nuclear factor-κB (NF-κB) and regulating the expression of proinflammatory genes like tumor necrosis factor (TNF) and interleukin-1 (IL-1), which were highly involved in Salmonella Pullorum infection. To detect the relationship between polymorphisms of the MyD88 gene and Salmonella Pullorum disease, we screened the coding region (CDS) of the MYD88 gene by DNA pool construction and sequencing based on case-control study. Eight single nucleotide polymorphisms (SNPs) in the sequenced fragment (5 exons), 7 known loci and one novel mutation named G4810372T (SNP8), were found in the fifth exon. In addition, we found 7 nonsynonymous substitutions. The allele frequency of only one SNP, g.4810191C > T (SNP1), was significantly different (P < 0.05) between case and control groups. The genotype frequencies of SNP1 (g.4810191C > T) and SNP3 (g.4810257G > T) were of significant difference between the case and the control groups (P < 0.05). Collectively, SNPs of the MyD88 gene were significantly associated with susceptibility to Salmonella Pullorum infection, which can be used as a disease-resistant marker in chicken. These results provided a theoretical basis for future research on chicken breeding by marker-assisted selection.
Collapse
|
85
|
Zhu X, Shi D, Li X, Gong W, Wu F, Guo X, Xiao H, Liu L, Zhou H. TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3α. Cell Signal 2015; 28:148-156. [PMID: 26658093 DOI: 10.1016/j.cellsig.2015.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 02/08/2023]
Abstract
Infection in male and female genital tracts can lead to infertility. The underlying mechanisms of this process remain unclear. Toll-like receptors (TLRs) recognize conserved structures and respond to pathogens by initiating signals that activate inflammatory gene transcription. Here, we demonstrate that TLR activation in sperm reduces sperm motility via signalling through myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K), and glycogen synthase kinase (GSK)-3α. Upon TLR activation, phosphorylated forms of PI3K and GSK3α were detected in the mitochondria, and the mitochondrial membrane potential was impaired in sperm. In addition, mitochondrial ATP levels were decreased after TLR agonist stimulation. Furthermore, blocking PI3K or GSK3α activation abrogated these effects and reversed the TLR-induced reduction in sperm motility. These results identify a previously unrecognized TLR signalling pathway that leads to dysfunctional sperm mitochondria, which reduce sperm motility. Our study reveals a novel mechanism by which pathogenic infection affects sperm motility and possibly leads to infertility.
Collapse
Affiliation(s)
- Xingxing Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoqian Li
- Department of Immunology, Nanjing Medical University, Nanjing 210029, China
| | - Weijuan Gong
- Department of Microbiology & Immunology, Yangzhou University, Yangzhou 225009, China
| | - Fengjiao Wu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hui Xiao
- Institute of Pasteur Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Hong Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
86
|
Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. J Neurochem 2015; 136:457-74. [PMID: 26509334 DOI: 10.1111/jnc.13411] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/11/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Deposition of amyloid-β (Aβ) remains a hallmark feature of the disease, yet the precise mechanism(s) by which this peptide induces neurotoxicity remain unknown. Neuroinflammation has long been implicated in AD pathology, yet its contribution to disease progression is still not understood. Recent evidence suggests that various Aβ complexes interact with microglial and astrocytic expressed pattern recognition receptors that initiate innate immunity. This process involves secretion of pro-inflammatory cytokines, chemokines and generation of reactive oxygen species that, in excess, drive a dysregulated immune response that contributes to neurodegeneration. The mechanisms by which a neuroinflammatory response can influence Aβ production, aggregation and eventual clearance are now becoming key areas where future therapeutic intervention may slow progression of AD. This review will focus on evidence supporting the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD, describing the key cell types, pathways and mediators involved. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. Deposition of intracellular plaques containing amyloid-beta (Aβ) is a hallmark proteinopathy of the disease yet the precise mechanisms by which this peptide induces neurotoxicity remains unknown. A neuroinflammatory response involving polarized microglial activity, enhanced astrocyte reactivity and elevated pro-inflammatory cytokine and chemokine load has long been implicated in AD and proposed to facilitate neurodegeneration. In this issue we discuss key receptor systems of innate immunity that detect Aβ, drive pro-inflammatory cytokine and chemokine production and influence Aβ aggregation and clearance. Evidence summarized in this review supports the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD and highlights the potential of immunomodulatory agents as potential future therapies for AD patients.
Collapse
Affiliation(s)
- Myles R Minter
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Juliet M Taylor
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
87
|
Ainscough JS, Gerberick GF, Kimber I, Dearman RJ. Interleukin-1β Processing Is Dependent on a Calcium-mediated Interaction with Calmodulin. J Biol Chem 2015; 290:31151-61. [PMID: 26559977 PMCID: PMC4692238 DOI: 10.1074/jbc.m115.680694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 01/15/2023] Open
Abstract
The secretion of IL-1β is a central event in the initiation of inflammation. Unlike most other cytokines, the secretion of IL-1β requires two signals: one signal to induce the intracellular up-regulation of pro-IL-1β and a second signal to drive secretion of the bioactive molecule. The release of pro-IL-1β is a complex process involving proteolytic cleavage by caspase-1. However, the exact mechanism of secretion is poorly understood. Here we sought to identify novel proteins involved in IL-1β secretion and intracellular processing to gain further insights into the mechanism of IL-1 release. A human proteome microarray containing 19,951 unique proteins was used to identify proteins that bind human recombinant pro-IL-1β. Probes with a signal-to-noise ratio of >3 were defined as biologically relevant. In these analyses, calmodulin was identified as a particularly strong hit, with a signal-to-noise ratio of ∼11. Using an ELISA-based protein-binding assay, the interaction of recombinant calmodulin with pro-IL-1β, but not mature IL-1β, was confirmed and shown to be calcium-dependent. Finally, using small molecule inhibitors, it was demonstrated that both calcium and calmodulin were required for nigericin-induced IL-1β secretion in THP-1 cells and primary human monocytes. Together, these data suggest that, following calcium influx into the cell, pro-IL-1β interacts with calmodulin and that this interaction is important for IL-1β processing and release.
Collapse
Affiliation(s)
- Joseph S Ainscough
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | | | - Ian Kimber
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Rebecca J Dearman
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| |
Collapse
|
88
|
Bhushan B, Homma T, Norton JE, Sha Q, Siebert J, Gupta DS, Schroeder JW, Schleimer RP. Suppression of epithelial signal transducer and activator of transcription 1 activation by extracts of Aspergillus fumigatus. Am J Respir Cell Mol Biol 2015; 53:87-95. [PMID: 25474274 DOI: 10.1165/rcmb.2014-0333oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus fumigatus (AF) is often pathogenic in immune-deficient individuals and can cause life-threatening infections such as invasive aspergillosis. The pulmonary epithelial response to AF infection and the signaling pathways associated with it have not been completely studied. BEAS-2B cells or primary human bronchial epithelial cells were exposed to extracts of AF and challenged with IFN-β or the Toll-like receptor 3 agonist double-stranded RNA (dsRNA). Cytokine release (B-cell activating factor of the TNF family [BAFF], IFN-γ-induced protein-10 [IP-10], etc.) was assessed. AF extract was separated into low-molecular-weight (LMW) and high-molecular-weight (HMW) fractions using ultra 4 centrifugal force filters to characterize the activity. Real-time PCR was performed with a TaqMan method, and protein estimation was performed using ELISA techniques. Western blot was performed to assess phosphorylation of signal transducer and activator of transcription 1 (STAT1). IFN-β and dsRNA induced messenger RNA (mRNA) expression of BAFF (350- and 452-fold, respectively [n = 3]) and IP-10 (1,081- and 3,044-fold, respectively [n = 3]) in BEAS-2B cells. When cells were pretreated with AF extract for 1 hour and then stimulated with IFN-β or dsRNA for 6 hours, induction of BAFF and IP-10 mRNA was strongly suppressed relative to levels produced by IFN-β and dsRNA alone. When compared with control, soluble BAFF and IP-10 protein levels were maximally suppressed in dsRNA-stimulated wells treated with 1:320 wt/vol AF extract (P < 0.005). Upon molecular size fractionation, a LMW fraction of AF extract had no measurable suppressive effect on IP-10 mRNA expression. However, a HMW fraction of the AF extract significantly suppressed IP-10 expression in BEAS-2B cells that were stimulated with dsRNA or IFN-β. When BEAS-2B cells were pretreated with AF extract and then stimulated with IFN-β, reduced levels of pSTAT1 were observed, with maximum suppression at 4 and 6 hours. Our results show that AF extracts suppressed expression of inflammatory cytokines in association with inhibition of the IFN-β signaling pathway and suppression of the formation of pSTAT1.
Collapse
Affiliation(s)
- Bharat Bhushan
- 1 Division of Otolaryngology-Head and Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago and the Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tetsuya Homma
- 2 Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,3 Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - James E Norton
- 2 Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Quan Sha
- 4 Allergy and Immunology Research Center, Anhui Medical University, Anhui, China
| | - Jason Siebert
- 5 Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Dave S Gupta
- 6 Division of Allergy and Immunology, National Jewish Health, Denver, Colorado
| | - James W Schroeder
- 1 Division of Otolaryngology-Head and Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago and the Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert P Schleimer
- 2 Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
89
|
Rodriguez-Miguelez P, Fernandez-Gonzalo R, Collado PS, Almar M, Martinez-Florez S, de Paz JA, González-Gallego J, Cuevas MJ. Whole-body vibration improves the anti-inflammatory status in elderly subjects through toll-like receptor 2 and 4 signaling pathways. Mech Ageing Dev 2015; 150:12-9. [PMID: 26253933 DOI: 10.1016/j.mad.2015.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/21/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
Abstract
Regular physical exercise has anti-inflammatory effects in elderly subjects. Yet, the inflammatory responses after whole body vibration (WBV) training, a popular exercise paradigm for the elderly, remain to be elucidated. This study assessed the effects of WBV training on the inflammatory response associated with toll-like receptors (TLRs) signaling pathways. Twenty-eight subjects were randomized to a training group (TG) or a control group (CG). TG followed an 8-week WBV training program. Blood samples were obtained before and after the training period in both groups. Peripheral blood mononuclear cells were isolated, and mRNA and protein levels of makers involved in the TLR2/TLR4 myeloid differentiation primary response gen 88 (MyD88) and TIR domain-containing adaptor inducing interferon (TRIF)-dependent pathways were analyzed. Plasma TNFα and C-reactive protein levels were also assessed. The WBV program reduced protein expression of TLR2, TLR4, MyD88, p65, TRIF and heat shock protein (HSP) 60, while HSP70 content increased. IL-10 mRNA level and protein concentration were upregulated, and TNFα protein content decreased, after WBV training. Plasma concentration of C-reactive protein and TNFα decreased in the TG. The current data suggest WBV may improve the anti-inflammatory status of elderly subjects through an attenuation of MyD88- and TRIF-dependent TLRs signaling pathways.
Collapse
Affiliation(s)
- Paula Rodriguez-Miguelez
- Division of Clinical Translational Science, Georgia Prevention Institute, Department of Pediatrics, Georgia Regents University, USA
| | | | - Pilar S Collado
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Mar Almar
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - José A de Paz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.
| |
Collapse
|
90
|
Crowley T, Fitzpatrick JM, Kuijper T, Cryan JF, O'Toole O, O'Leary OF, Downer EJ. Modulation of TLR3/TLR4 inflammatory signaling by the GABAB receptor agonist baclofen in glia and immune cells: relevance to therapeutic effects in multiple sclerosis. Front Cell Neurosci 2015; 9:284. [PMID: 26283920 PMCID: PMC4516894 DOI: 10.3389/fncel.2015.00284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022] Open
Abstract
The GABAB receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in a number of disorders including multiple sclerosis (MS), but its precise mechanism of action is unknown. Neuroinflammation drives the central pathology in MS and is mediated by both immunoreactive glial cells and invading lymphocytes. Furthermore, a body of data indicates that the Toll-like receptor (TLR) family of innate immune receptors is implicated in MS progression. In the present study we investigated whether modulation of GABAB receptors using baclofen can exert anti-inflammatory effects by targeting TLR3 and(or) TLR4-induced inflammatory signaling in murine glial cells and human peripheral blood mononuclear cells (PBMCs) isolated from healthy control individuals and patients with the relapse-remitting (RR) form of MS. TLR3 and TLR4 stimulation promoted the nuclear sequestration of NF-κB and pro-inflammatory cytokine expression in murine glia, while TLR4, but not TLR3, promoted pro-inflammatory cytokine expression in PBMCs isolated from both healthy donors and RR-MS patients. Importantly, this effect was exacerbated in RR-MS patient immune cells. We present further evidence that baclofen dose-dependently attenuated TLR3- and TLR4-induced inflammatory signaling in primary glial cells. Pre-exposure of PBMCs isolated from healthy donors to baclofen attenuated TLR4-induced TNF-α expression, but did not affect TLR4-induced TNF-α expression in RR-MS patient PBMCs. Interestingly, mRNA expression of the GABAB receptor was reduced in PBMCs from RR-MS donors when compared to healthy controls, an effect that might contribute to the differential sensitivity to baclofen seen in healthy and RR-MS patient cells. Overall these findings indicate that baclofen differentially regulates TLR3 and TLR4 signaling in glia and immune cells, and offers insight on the role of baclofen in the treatment of neuroinflammatory disease states including MS.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | | | - Teun Kuijper
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland
| | | | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland
| | - Eric J Downer
- Department of Anatomy and Neuroscience, University College Cork Cork, Ireland ; School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| |
Collapse
|
91
|
Humphries F, Moynagh PN. Molecular and physiological roles of Pellino E3 ubiquitin ligases in immunity. Immunol Rev 2015; 266:93-108. [DOI: 10.1111/imr.12306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fiachra Humphries
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
| | - Paul N. Moynagh
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University Belfast; Northern Ireland UK
| |
Collapse
|
92
|
Zhang XJ, Zhang P, Li H. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 2015; 66:222-47. [PMID: 26077571 DOI: 10.1161/hypertensionaha.115.04898] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.).
| |
Collapse
|
93
|
Song Y, Liu X, Yue H, Ji J, Dou H, Hou Y. Anti-inflammatory effects of benzenediamine derivate FC-98 on sepsis injury in mice via suppression of JNK, NF-κB and IRF3 signaling pathways. Mol Immunol 2015; 67:183-92. [PMID: 26032013 DOI: 10.1016/j.molimm.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
FC-98, a synthesized benzenediamine derivate, was reported to regulate Toll-like receptor 9-induced activation of dendritic cells in our previous study. In this study, we evaluated the anti-inflammatory properties of FC-98 both in macrophages and in septic mouse models. By using enzyme-linked immunosorbent assay and real-time quantitative PCR, we found that FC-98 (6.25, 25 and 100μM) dose-dependently attenuated lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein (MCP-1) productions in RAW264.7 and primary mouse peritoneal macrophages. These inhibitory effects were not due to inducing cell cytotoxicity or altering LPS binding or TLR4 expression. Subsequently, western blot, immunofluorescence and luciferase reporter assays were used to investigate the underlying mechanisms of its anti-inflammatory activities. Results showed that FC-98 blocked activation of the c-Jun N-terminal kinase (JNK), nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) signaling pathways. In vivo, FC-98 (30 or 100mg/kg) was intraperitoneally administrated into LPS-induced or CLP-induced sepsis mice. It was observed to enhance the survival rate, inhibit pro-inflammatory mediator production, improve organ injuries and suppress bacterial propagation. In conclusion, FC-98 effectively inhibited macrophage inflammatory responses and ameliorated sepsis in mice through down-regulation of both MyD88 and TRIF-dependent pathways. These results suggest that FC-98 could be a promising therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xianqin Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Biothera Solutions, formerly as Sinoasis Pharma, Ltd., Guangzhou, China
| | - Huimin Yue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jianjian Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| |
Collapse
|
94
|
Shim DW, Heo KH, Kim YK, Sim EJ, Kang TB, Choi JW, Sim DW, Cheong SH, Lee SH, Bang JK, Won HS, Lee KH. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages. PLoS One 2015; 10:e0126871. [PMID: 26017270 PMCID: PMC4446091 DOI: 10.1371/journal.pone.0126871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Kang-Hyuck Heo
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Young-Kyu Kim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Eun-Jeong Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Jae-Wan Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Dae-Won Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Sun-Hee Cheong
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Seung-Hong Lee
- Division of Food Bioscience, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Jeong-Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
- * E-mail: (HW); (KL)
| | - Kwang-Ho Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
- * E-mail: (HW); (KL)
| |
Collapse
|
95
|
Minter MR, Main BS, Brody KM, Zhang M, Taylor JM, Crack PJ. Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro. J Neuroinflammation 2015; 12:71. [PMID: 25879763 PMCID: PMC4407532 DOI: 10.1186/s12974-015-0263-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/09/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer's disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aβ. METHODS Wildtype and Myd88(-/-) primary cultured cortical and hippocampal neurons were treated with 2.5 μM Aβ1-42 for 24 to 72 h or 1 to 10 μM Aβ1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 μM Aβ1-42/Aβ42-1 for 24 to 96 h, 2.5 to 15 μM Aβ1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNβ, IL-1β, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay. RESULTS Reduced IFNα, IFNβ, IL-1β, IL-6 and TNFα expression was detected in Aβ1-42-treated Myd88(-/-) neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88(-/-) neuronal cultures were protected against Aβ1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNβ and p-STAT-3 induction to both Aβ1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aβ1-42-induced cytotoxicity. CONCLUSIONS This study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Myles Robert Minter
- Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne, 3010, VIC, Australia.
| | - Bevan Scott Main
- Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne, 3010, VIC, Australia.
| | - Kate Maree Brody
- Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne, 3010, VIC, Australia.
| | - Moses Zhang
- Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne, 3010, VIC, Australia.
| | - Juliet Marie Taylor
- Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne, 3010, VIC, Australia.
| | - Peter John Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
96
|
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103. [PMID: 25614319 DOI: 10.1038/nri3787] [Citation(s) in RCA: 1912] [Impact Index Per Article: 191.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) have diverse effects on innate and adaptive immune cells during infection with viruses, bacteria, parasites and fungi, directly and/or indirectly through the induction of other mediators. Type I IFNs are important for host defence against viruses. However, recently, they have been shown to cause immunopathology in some acute viral infections, such as influenza virus infection. Conversely, they can lead to immunosuppression during chronic viral infections, such as lymphocytic choriomeningitis virus infection. During bacterial infections, low levels of type I IFNs may be required at an early stage, to initiate cell-mediated immune responses. High concentrations of type I IFNs may block B cell responses or lead to the production of immunosuppressive molecules, and such concentrations also reduce the responsiveness of macrophages to activation by IFNγ, as has been shown for infections with Listeria monocytogenes and Mycobacterium tuberculosis. Recent studies in experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Collapse
Affiliation(s)
- Finlay McNab
- 1] Allergic Inflammation Discovery Performance Unit, Respiratory Disease Respiratory Research and Development, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK. [2] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Andreas Wack
- Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anne O'Garra
- 1] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. [2] National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
97
|
Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions. Nat Commun 2015; 6:6669. [PMID: 25808990 DOI: 10.1038/ncomms7669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 02/18/2015] [Indexed: 11/08/2022] Open
Abstract
Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.
Collapse
|
98
|
A novel synthetic derivative of melatonin, 5-hydroxy-2'-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation. Toxicol Appl Pharmacol 2015; 284:227-35. [PMID: 25689174 DOI: 10.1016/j.taap.2015.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
Melatonin is substantially reported to possess anti-inflammatory properties. In the present study, we synthesized a novel melatonin derivative, 5-hydroxy-2'-isobutyl-streptochlorin (HIS), which displayed superior anti-inflammatory properties to its parent compound. Further, we explored its underlying mechanisms in cellular and experimental animal models. Lipopolysaccharide was used to induce in vitro inflammatory responses in RAW 264.7 macrophages. LPS-primed macrophages were pulsed with biologically unrelated toxic molecules to evaluate the role of HIS on inflammasome activation. In vivo verifications were carried out using acute lung injury (ALI) and Escherichia coli-induced septic shock mouse models. HIS inhibited the production of proinflammatory mediators and cytokines such as nitric oxide, cyclooxygenase 2, IL-1β, IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophages. HIS suppressed the infiltration of immune cells into the lung and the production of pro-inflammatory cytokines such as IL-6 and TNF-α in broncho-alveolar lavage fluid in the ALI mouse model. Mechanistic studies revealed that the inhibitory effects of HIS were mediated through the regulation of the TIR domain-containing, adaptor-inducing, interferon-β (TRIF)-dependent signaling pathway from toll-like receptors. Further, HIS attenuated IL-1β secretion via the inhibition of NLRP3 inflammasome activation independent of mitochondrial ROS production. Furthermore, HIS suppressed IL-1β, IL-6 and interferon-β production in peritoneal lavage in the Escherichia coli-induced sepsis mouse model. In conclusion, HIS exerted potent anti-inflammatory effects via the regulation of TRIF-dependent signaling and inflammasome activation. Notably, the superior anti-inflammatory properties of this derivative compared with its parent compound could be a promising lead for treating various inflammatory-mediated diseases.
Collapse
|
99
|
Interferon induction by RNA viruses and antagonism by viral pathogens. Viruses 2014; 6:4999-5027. [PMID: 25514371 PMCID: PMC4276940 DOI: 10.3390/v6124999] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/04/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR). Host PRR for RNA viruses include Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.
Collapse
|
100
|
Li M, Zhu Y, Zhang H, Li L, He P, Xia H, Zhang Y, Mao C. Delivery of inhibitor of growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells. Sci Rep 2014; 4:7380. [PMID: 25490312 PMCID: PMC4260466 DOI: 10.1038/srep07380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has suggested that inhibitor of growth 4 (ING4), a novel member of ING family proteins, plays a critical role in the development and progression of different tumors via multiple pathways. However, the function of ING4 in human osteosarcoma remains unclear. To understand its potential roles and mechanisms in inhibiting osteosarcoma, we constructed an expression vector pEGFP-ING4 and transfected the human osteosarcoma cells using this vector. We then studied the effects of over-expressed ING4 in the transfected cells on the proliferation, apoptosis and invasion of the osteosarcoma cells. The up-regulation of ING4 in the osteosarcoma cells, arising from the stable pEGFP-ING4 gene transfection, was found to significantly inhibit the cell proliferation by the cell cycle alteration with S phase reduction and G0/G1 phase arrest, induce cell apoptosis via the activation of the mitochondria pathway, and suppress cell invasion through the down-regulation of the matrix metalloproteinase 2 (MMP-2) and MMP-9 expression. In addition, increased ING4 level evoked the blockade of NF-κB signaling pathway and down-regulation of its target proteins. Our work suggests that ING4 can suppress osteosarcoma progression through signaling pathways such as mitochondria pathway and NF-κB signaling pathway and ING4 gene therapy is a promising approach to treating osteosarcoma.
Collapse
Affiliation(s)
- Mei Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman OK 73019, USA
| | - Hongbin Zhang
- Department of Medical Research, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Lihua Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Peng He
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Hong Xia
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman OK 73019, USA
| |
Collapse
|