51
|
Bradshaw G, Lualhati RR, Albury CL, Maksemous N, Roos-Araujo D, Smith RA, Benton MC, Eccles DA, Lea RA, Sutherland HG, Haupt LM, Griffiths LR. Exome Sequencing Diagnoses X-Linked Moesin-Associated Immunodeficiency in a Primary Immunodeficiency Case. Front Immunol 2018; 9:420. [PMID: 29556235 PMCID: PMC5845094 DOI: 10.3389/fimmu.2018.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background We investigated the molecular etiology of a young male proband with confirmed immunodeficiency of unknown cause, presenting with recurrent bacterial and Varicella zoster viral infections in childhood and persistent lymphopenia into early adulthood. Aim To identify causative functional genetic variants related to an undiagnosed primary immunodeficiency. Method Whole genome microarray copy number variant (CNV) analysis was performed on the proband followed by whole exome sequencing (WES) and trio analysis of the proband and family members. A >4 kbp deletion identified by repeated CNV analysis of exome sequencing data along with three damaging missense single nucleotide variants were validated by Sanger sequencing in all family members. Confirmation of the causative role of the candidate gene was performed by qPCR and Western Blot analyses on the proband, family members and a healthy control. Results CNV identified our previously reported interleukin 25 amplification in the proband; however, the variant was not validated to be a candidate gene for immunodeficiency. WES trio analysis, data filtering and in silico prediction identified a novel, damaging (SIFT: 0; Polyphen 1; Grantham score: 101) and disease-causing (MutationTaster) single base mutation in the X chromosome (c.511C > T p.Arg171Trp) MSN gene not identified in the UCSC Genome Browser database. The mutation was validated by Sanger sequencing, confirming the proband was hemizygous X-linked recessive (–/T) at this locus and inherited the affected T allele from his non-symptomatic carrier mother (C/T), with other family members (father, sister) confirmed to be wild type (C/C). Western Blot analysis demonstrated an absence of moesin protein in lymphocytes derived from the proband, compared with normal expression in lymphocytes derived from the healthy control, father and mother. qPCR identified significantly lower MSN mRNA transcript expression in the proband compared to an age- and sex-matched healthy control subject in whole blood (p = 0.02), and lymphocytes (p = 0.01). These results confirmed moesin deficiency in the proband, directly causative of his immunodeficient phenotype. Conclusion These findings confirm X-linked moesin-associated immunodeficiency in a proband previously undiagnosed up to 24 years of age. This study also highlights the utility of WES for the diagnosis of rare or novel forms of primary immunodeficiency disease.
Collapse
Affiliation(s)
- Gabrielle Bradshaw
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robbie R Lualhati
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Neven Maksemous
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Deidre Roos-Araujo
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert A Smith
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Miles C Benton
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - David A Eccles
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod A Lea
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
52
|
Satooka H, Nagakubo D, Sato T, Hirata T. The ERM Protein Moesin Regulates CD8 + Regulatory T Cell Homeostasis and Self-Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 199:3418-3426. [PMID: 28978692 DOI: 10.4049/jimmunol.1700074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
The ezrin-radixin-moesin (ERM) proteins are a family of membrane-associated proteins that link membrane proteins with actin filaments in the cell cortex and regulate many cellular processes, including cell shape determination, membrane transport, and signal transduction. Lymphocytes predominantly express two ERM members, ezrin and moesin. Mutations in the moesin gene in humans are associated with primary immunodeficiency with profound lymphopenia, and moesin-deficient mice exhibit a similar lymphopenia phenotype. In this study, we show that aging moesin-deficient mice develop a systemic lupus erythematosus-like autoimmune phenotype, which is characterized by elevated serum autoantibody levels and glomerulonephritis. Younger moesin-deficient mice exhibited elevated basal levels of several Ig isotypes and enhanced Ab affinity maturation upon immunization. Germinal center B cells and follicular helper T cells spontaneously accumulated in unimmunized mice, and CD8+CD44+CD122+Ly49+ regulatory T (CD8+ Tregs) cells, which inhibit the expansion of follicular helper T cells, were severely reduced in these mice. Isolated CD8+ Treg cells from moesin-deficient mice showed impaired proliferation in response to IL-15, which was accompanied by defects in STAT5 activation and IL-15Rα internalization, suggesting that moesin plays a key role in IL-15-mediated signaling. These findings underscore the importance of moesin in IL-15-dependent CD8+ Treg cell homeostasis and, thus, the control of self-tolerance.
Collapse
Affiliation(s)
- Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and
| | - Daisuke Nagakubo
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and
| | - Tomomi Sato
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and.,Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; and
| |
Collapse
|
55
|
Su H. Studying human immunodeficiencies in humans: advances in fundamental concepts and therapeutic interventions. F1000Res 2017; 6:318. [PMID: 28408979 PMCID: PMC5373415 DOI: 10.12688/f1000research.10594.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 01/23/2023] Open
Abstract
Immunodeficiencies reveal the crucial role of the immune system in defending the body against microbial pathogens. Given advances in genomics and other technologies, this is currently best studied in humans who have inherited monogenic diseases. Such investigations have provided insights into how gene products normally function in the natural environment and have opened the door to new, exciting treatments for these diseases.
Collapse
Affiliation(s)
- Helen Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|