51
|
Thomas L, Ram H, Singh VP. Inducible cellulase production from an organic solvent tolerant Bacillus sp. SV1 and evolutionary divergence of endoglucanase in different species of the genus Bacillus. Braz J Microbiol 2017; 49:429-442. [PMID: 29157901 PMCID: PMC5914138 DOI: 10.1016/j.bjm.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/19/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022] Open
Abstract
Bacteria are important sources of cellulases with various industrial and biotechnological applications. In view of this, a non-hemolytic bacterial strain, tolerant to various environmental pollutants (heavy metals and organic solvents), showing high cellulolytic index (7.89) was isolated from cattle shed soil and identified as Bacillus sp. SV1 (99.27% pairwise similarity with Bacillus korlensis). Extracellular cellulases showed the presence of endoglucanase, total cellulase and β-glucosidase activities. Cellulase production was induced in presence of cellulose (3.3 times CMCase, 2.9 times FPase and 2.1 times β-glucosidase), and enhanced (115.1% CMCase) by low-cost corn steep solids. An in silico investigation of endoglucanase (EC 3.2.1.4) protein sequences of three Bacillus spp. as query, revealed their similarities with members of nine bacterial phyla and to Eukaryota (represented by Arthropoda and Nematoda), and also highlighted of a convergent and divergent evolution from other enzymes of different substrate [(1,3)-linked beta-d-glucans, xylan and chitosan] specificities. Characteristic conserved signature indels were observed among members of Actinobacteria (7 aa insert) and Firmicutes (9 aa insert) that served as a potential tool in support of their relatedness in phylogenetic trees.
Collapse
Affiliation(s)
- Lebin Thomas
- University of Delhi, Department of Botany, Delhi, India
| | - Hari Ram
- University of Delhi, Department of Botany, Delhi, India
| | - Ved Pal Singh
- University of Delhi, Department of Botany, Delhi, India.
| |
Collapse
|
52
|
Diverse molecular resistance mechanisms of Bacillus megaterium during metal removal present in a spent catalyst. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
53
|
Pérez-Palacios P, Romero-Aguilar A, Delgadillo J, Doukkali B, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E. Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14910-14923. [PMID: 28480491 DOI: 10.1007/s11356-017-9092-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Excess copper (Cu) in soils has deleterious effects on plant growth and can pose a risk to human health. In the last decade, legume-rhizobium symbioses became attractive biotechnological tools for metal phytostabilization. For this technique being useful, metal-tolerant symbionts are required, which can be generated through genetic manipulation.In this work, a double symbiotic system was engineered for Cu phytostabilization: On the one hand, composite Medicago truncatula plants expressing the metallothionein gene mt4a from Arabidopsis thaliana in roots were obtained to improve plant Cu tolerance. On the other hand, a genetically modified Ensifer medicae strain, expressing copper resistance genes copAB from Pseudomonas fluorescens driven by a nodulation promoter, nifHp, was used for plant inoculation. Our results indicated that expression of mt4a in composite plants ameliorated plant growth and nodulation and enhanced Cu tolerance. Lower levels of ROS-scavenging enzymes and of thiobarbituric acid reactive substances (TBARS), such as malondialdehyde (a marker of lipid peroxidation), suggested reduced oxidative stress. Furthermore, inoculation with the genetically modified Ensifer further improved root Cu accumulation without altering metal loading to shoots, leading to diminished values of metal translocation from roots to shoots. The double modified partnership is proposed as a suitable tool for Cu rhizo-phytostabilization.
Collapse
Affiliation(s)
- Patricia Pérez-Palacios
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Asunción Romero-Aguilar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Julián Delgadillo
- Área de Microbiología, Colegio de Post-Graduados, Campus de Montecillo, Carretera Federal México-Texcoco, 56230, Montecillo, Mexico
| | - Bouchra Doukkali
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Miguel A Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain.
| |
Collapse
|
54
|
Li Y, Pang HD, He LY, Wang Q, Sheng XF. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:56-63. [PMID: 28011421 DOI: 10.1016/j.ecoenv.2016.12.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Hai-Dong Pang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Lin-Yan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Qi Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xia-Fang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
55
|
Wang X, Nie Z, He L, Wang Q, Sheng X. Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:179-189. [PMID: 27839757 DOI: 10.1016/j.scitotenv.2016.10.239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
In this study, three As-tolerant bacteria Ralstonia eutropha Q2-8, Rhizobium tropici Q2-13, and Exiguobacterium aurantiacum Q3-11 were isolated from the rhizosphere and bulk soils of Chinese cabbage. The strains were characterized for their production of indole-3-acetic acid (IAA) and siderophores, their effects on soil metal(loid) bioavailability and organic matter content, and their effects on the edible tissue growth and metal(loid) accumulation of Chinese cabbage and radish in the metal(loid)-contaminated soil. The strains produced IAA and siderophores and increased the edible tissue biomass (ranging from 74% to 124%) of the vegetables compared to the controls. Furthermore, strain Q2-8 reduced As contents (ranging from 22% to 50%), while strains Q2-13 and Q3-11 decreased Cd contents (ranging from 21% to 53%) of the edible tissues of the vegetables compared to the controls. Strains Q2-8, Q2-13, and Q3-11 decreased the DTPA-extractable Cd contents (ranging from 16% to 41%) and increased the organic matter contents of the rhizosphere soils compared to the controls. The results showed the effects of the strains on the increased edible tissue growth and reduced As and Cd uptake of the edible tissues and highlighted the possibility to develop a new bacterial-assisted technique for reduced metal(loid) uptake of vegetables in the metal(loid)-contaminated soils.
Collapse
Affiliation(s)
- Xiaohan Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zongwei Nie
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linyan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qi Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiafang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
56
|
Mohamed HM, Almaroai YA. Effect of Phosphate Solubilizing Bacteria on the Uptake of Heavy Metals by Corn Plants in a Long-Term Sewage Wastewater Treated Soil. ACTA ACUST UNITED AC 2017. [DOI: 10.18178/ijesd.2017.8.5.979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
57
|
Fierros Romero G, Rivas Castillo A, Gómez Ramírez M, Pless R, Rojas Avelizapa N. Expression Analysis of Ni- and V-Associated Resistance Genes in a Bacillus megaterium Strain Isolated from a Mining Site. Curr Microbiol 2016; 73:165-71. [PMID: 27107759 DOI: 10.1007/s00284-016-1044-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 11/30/2022]
Abstract
Bacillus megaterium strain MNSH1-9K-1 was isolated from a mining site in Guanajuato, Mexico. This B. megaterium strain presented the ability to remove Ni and V from a spent catalyst. Also, its associated metal resistance genes nccA, hant, VAN2, and smtAB were previously identified by a PCR approach. The present study reports for the first time, in B. megaterium, the changes in the expression of the genes nccA (Ni-Co-Cd resistance); hant (high-affinity nickel transporter); smtAB, a metal-binding protein gene; and VAN2 (V resistance) after exposure to 200 ppm of Ni and 200 ppm of V during the stationary phase of the microorganism in PHGII liquid media. The data presented here may contribute to the knowledge of the genes involved in the Ni and V resistances of B. megaterium, and the possible pathways implicated in the Ni-V removal processes, which may be potentiated for the biological treatment of high metal content residues.
Collapse
Affiliation(s)
- Grisel Fierros Romero
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Andrea Rivas Castillo
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Marlenne Gómez Ramírez
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Reynaldo Pless
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Norma Rojas Avelizapa
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico.
| |
Collapse
|
58
|
Broadhurst CL, Chaney RL. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil. FRONTIERS IN PLANT SCIENCE 2016; 7:451. [PMID: 27092164 PMCID: PMC4824781 DOI: 10.3389/fpls.2016.00451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/22/2016] [Indexed: 05/20/2023]
Abstract
The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and phytomining approaches.
Collapse
Affiliation(s)
- Catherine L. Broadhurst
- Environmental Microbiology and Food Safety Laboratory, U.S. Department of Agriculture Agricultural Research ServiceBeltsville, MD USA
- Department of Food Science and Nutrition, University of MarylandCollege Park, MD, USA
| | - Rufus L. Chaney
- Crop Systems and Global Change Laboratory, U.S. Department of Agriculture Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
59
|
Fierros-Romero G, Gómez-Ramírez M, Arenas-Isaac GE, Pless RC, Rojas-Avelizapa NG. Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Can J Microbiol 2016; 62:505-13. [PMID: 27210016 DOI: 10.1139/cjm-2015-0507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus megaterium MNSH1-9K-1 and Microbacterium liquefaciens MNSH2-PHGII-2, 2 nickel- and vanadium-resistant bacteria from mine tailings located in Guanajuato, Mexico, are shown to have the ability to remove 33.1% and 17.8% of Ni, respectively, and 50.8% and 14.0% of V, respectively, from spent petrochemical catalysts containing 428 ± 30 mg·kg(-1) Ni and 2165 ± 77 mg·kg(-1) V. In these strains, several Ni resistance determinants were detected by conventional PCR. The nccA (nickel-cobalt-cadmium resistance) was found for the first time in B. megaterium. In M. liquefaciens, the above gene as well as the czcD gene (cobalt-zinc-cadmium resistance) and a high-affinity nickel transporter were detected for the first time. This study characterizes the resistance of M. liquefaciens and B. megaterium to Ni through the expression of genes conferring metal resistance.
Collapse
Affiliation(s)
- Grisel Fierros-Romero
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Marlenne Gómez-Ramírez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Ginesa E Arenas-Isaac
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Reynaldo C Pless
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Norma G Rojas-Avelizapa
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| |
Collapse
|
60
|
Ahemad M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 2015; 13:51-58. [PMID: 30647566 PMCID: PMC6299803 DOI: 10.1016/j.jgeb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/24/2014] [Accepted: 02/14/2015] [Indexed: 12/01/2022]
Abstract
Chromium, specifically hexavalent chromium is one of the most toxic pollutants that are released into soils by various anthropogenic activities. It has numerous adverse effects not only on plant system but also on beneficial soil microorganisms which are the indicators of soil fertility and health. Recent emergence of phytoremediation as an environmental friendly and economical approach to decontaminate the chromium stressed soils has received wider attention. But major drawback of this process is that it takes long time. Application of multifunctional plant-growth-promoting bacteria (PGPB) exhibiting chromium resistance and reducing traits when used as bioinoculants with phytoremediating plants, has resulted in a better plant growth and chromium remediating efficiency in a short time span. PGPB improve chromium uptake by modifying root architecture, secreting metal sequestering molecules in rhizosphere and alleviating chromium induced phytotoxicity. The purpose of this review is to highlight the plant-beneficial traits of PGPB to accelerate plant-growth and concurrently ameliorate phytoremediation of chromium contaminated soils.
Collapse
|
61
|
Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, Freitas H. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:931-44. [PMID: 26167758 DOI: 10.1080/15287394.2015.1051205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.
Collapse
Affiliation(s)
- Ying Ma
- a Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | | | | | | | | | | | | |
Collapse
|
62
|
Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 2014; 36:1129-39. [DOI: 10.1007/s10529-014-1466-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/09/2014] [Indexed: 11/26/2022]
|
63
|
Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. FRONTIERS IN PLANT SCIENCE 2014; 5:757. [PMID: 25601876 PMCID: PMC4283507 DOI: 10.3389/fpls.2014.00757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/09/2014] [Indexed: 05/20/2023]
Abstract
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria-plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- *Correspondence: Ying Ma, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal e-mail:
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil NaduThiruvarur, India
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| |
Collapse
|