51
|
de Araujo LG, Vieira LC, Canevesi RLS, da Silva EA, Watanabe T, de Padua Ferreira RV, Marumo JT. Biosorption of uranium from aqueous solutions by Azolla sp. and Limnobium laevigatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45221-45229. [PMID: 35146605 DOI: 10.1007/s11356-022-19128-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The main goal of this study was to assess alternatives to the current challenges on environmental quality and circular economy. The former is here addressed by the treatment of radioactively contaminated solutions, and the latter by using abundant and low-cost biomass. In this paper, we examine the biosorption of hexavalent uranium (U(VI)) in a batch system using the macrophytes Limnobium laevigatum and Azolla sp. by three operational parameters: biomass dose, metal ion concentration, and contact time. Simulated solutions were firstly addressed with two biomasses, followed by studies with real liquid organic radioactive waste (LORW) with Azolla sp. The batch experiments were carried out by mixing 0.20 g biomass in 10 mL of the prepared solution or LORW. The total contact time employed for the determination of the equilibrium times was 240 min, and the initial U(VI) concentration was 0.63 mmol L-1. The equilibrium times were 15 min for L. laevigatum and 30 min for Azolla sp. respectively. A wide range of initial U(VI) concentrations (0.25-36 mmol L-1) was then used to assess the adsorption capacity of each macrophyte. Isotherm models validated the adsorption performance of the biosorption process. Azolla sp. presented a much higher U(VI) uptake (0.474 mmol g-1) compared to L. laevigatum (0.026 mmol g-1). When in contact with LORW, Azolla sp. removed much less uranium, indicating an adsorption capacity of 0.010 mmol g-1. In conclusion, both biomasses, especially Azolla sp., can be used in the treatment of uranium-contaminated solutions.
Collapse
Affiliation(s)
- Leandro Goulart de Araujo
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil.
| | - Ludmila Cabreira Vieira
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| | - Rafael Luan Sehn Canevesi
- Universidade Estadual do Oeste do Paraná, Rua da Faculdade 645 - Jardim La Salle, Toledo, PR, 85903-000, Brazil
| | - Edson Antonio da Silva
- Universidade Estadual do Oeste do Paraná, Rua da Faculdade 645 - Jardim La Salle, Toledo, PR, 85903-000, Brazil
| | - Tamires Watanabe
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| | | | - Júlio Takehiro Marumo
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
52
|
Jiao GJ, Ma J, Zhang J, Li Y, Liu K, Sun R. Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
53
|
Effective separation of uranium(VI) from wastewater using a magnetic carbon as a recyclable adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
54
|
Guo Y, Xia M, Shao K, Xu G, Cheng W, Shang Z, Peng H, Teng YG, Dou J. Theoretical and experimental investigations of enhanced uranium(VI) adsorption by nitrogen doping strategy. Phys Chem Chem Phys 2022; 24:17163-17173. [DOI: 10.1039/d2cp01386j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the ongoing development and utilization of nuclear energy, uranium pollution has become an increasingly serious issue. Although many adsorbents are able to remove hexavalent uranium (U(VI)) from aqueous solution,...
Collapse
|
55
|
Wang Y, Ai Y, Liu X, Chen B, Zhang Y. Indole-functionalized cross-linked chitosan for effective uptake of uranium(VI) from aqueous solution. Polym Chem 2022. [DOI: 10.1039/d1py01725j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel indole-modified cross-linked chitosan aerogel (IAA-CTSA) was fabricated by grafting 3-indoleacetic acid onto chitosan and adding glutaraldehyde as crosslinking agent through a facile two-step one pot method. The...
Collapse
|
56
|
Brazdis RI, Fierascu I, Avramescu SM, Fierascu RC. Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6898. [PMID: 34832297 PMCID: PMC8618790 DOI: 10.3390/ma14226898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
Wastewater treatment remains a critical issue globally, despite various technological advancements and breakthroughs. The study of different materials and technologies gained new valences in the last years, in order to obtain cheap and efficient processes, to obtain a cleaner environment for future generations. In this context, the present review paper presents the new achievements in the materials domain with highlights on apatitic materials used for decontamination of water loaded with heavy metals. The main goal of this review is to present the adsorptive removal of heavy metals using hydroxyapatite-based adsorbents, offering a general overview regarding the recent progress in this particular area. Developing the current review, an attempt has been made to give appropriate recognition to the most recent data regarding the synthesis methods and targeted pollutants, including important information regarding the synthesis methods and precursors, morphological characteristics of the adsorbent materials and effectiveness of processes.
Collapse
Affiliation(s)
- Roxana Ioana Brazdis
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
57
|
Fast and Efficient Removal of Uranium onto a Magnetic Hydroxyapatite Composite: Mechanism and Process Evaluation. Processes (Basel) 2021. [DOI: 10.3390/pr9111927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The exploration and rational design of easily separable and highly efficient sorbents with satisfactory capability of extracting radioactive uranium (U)-containing compound(s) are of paramount significance. In this study, a novel magnetic hydroxyapatite (HAP) composite (HAP@ CoFe2O4), which was coupled with cobalt ferrite (CoFe2O4), was rationally designed for uranium(VI) removal through a facile hydrothermal process. The U(VI) ions were rapidly removed using HAP@ CoFe2O4 within a short time (i.e., 10 min), and a maximum U(VI) removal efficiency of 93.7% was achieved. The maximum adsorption capacity (Qmax) of the HAP@CoFe2O4 was 338 mg/g, which demonstrated the potential of as-prepared HAP@CoFe2O4 in the purification of U(VI) ions from nuclear effluents. Autunite [Ca(UO2)2(PO4)2(H2O)6] was the main crystalline phase to retain uranium, wherein U(VI) was effectively extracted and immobilized in terms of a relatively stable mineral. Furthermore, the reacted HAP@CoFe2O4 can be magnetically recycled. The results of this study reveal that the suggested process using HAP@CoFe2O4 is a promising approach for the removal and immobilization of U(VI) released from nuclear effluents.
Collapse
|