51
|
Jo JE, Mohan Raj S, Rathnasingh C, Selvakumar E, Jung WC, Park S. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate. Appl Microbiol Biotechnol 2008; 81:51-60. [PMID: 18668238 DOI: 10.1007/s00253-008-1608-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/06/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
3-Hydroxypropionaldehyde (3-HPA), an intermediary compound of glycerol metabolism in bacteria, serves as a precursor to 3-Hydroxypropionic acid (3-HP), a commercially valuable platform chemical. To achieve the effective conversion of 3-HPA to 3-HP, an aldH gene encoding an aldehyde dehydrogenase in Escherichia coli K-12 (AldH) was cloned, expressed, and characterized for its properties. The recombinant AldH exhibited broad substrate specificity for various aliphatic and aromatic aldehydes. AldH preferred NAD+ over NADP+ as a cofactor for the oxidation of most aliphatic aldehydes tested. Among the aldehydes used, the specific activity was highest (38.1 U mg(-1) protein) for 3-HPA at pH 8.0 and 37 degrees C. The catalytic efficiency (kcat) and the specificity constant (kcat/Km) for 3-HPA in the presence of NAD+ were 28.5 s(-1) and 58.6x10(3) M(-1) s(-1), respectively. The AldH activity was enhanced in the presence of disulfide reductants such as dithiothreitol (DTT) or 2-mercaptoethanol, while several metal ions, particularly Hg2+, Ag+, Cu2+, and Zn2+, inhibited AldH activity. This study illustrates that AldH is a potentially useful enzyme in converting 3-HPA to 3-HP.
Collapse
Affiliation(s)
- Ji-Eun Jo
- Department of Chemical and Biochemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
52
|
Bains J, Boulanger MJ. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400. J Mol Biol 2008; 379:597-608. [PMID: 18462753 DOI: 10.1016/j.jmb.2008.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/29/2022]
Abstract
The recently identified benzoate oxidation (box) pathway in Burkholderia xenovorans LB400 (LB400 hereinafter) assimilates benzoate through a unique mechanism where each intermediate is processed as a coenzyme A (CoA) thioester. A key step in this process is the conversion of 3,4-dehydroadipyl-CoA semialdehyde into its corresponding CoA acid by a novel aldehyde dehydrogenase (ALDH) (EC 1.2.1.x). The goal of this study is to characterize the biochemical and structural properties of the chromosomally encoded form of this new class of ALDHs from LB400 (ALDH(C)) in order to better understand its role in benzoate degradation. To this end, we carried out kinetic studies with six structurally diverse aldehydes and nicotinamide adenine dinucleotide (phosphate) (NAD(+) and NADP(+)). Our data definitively show that ALDH(C) is more active in the presence of NADP(+) and selective for linear medium-chain to long-chain aldehydes. To elucidate the structural basis for these biochemical observations, we solved the 1.6-A crystal structure of ALDH(C) in complex with NADPH bound in the cofactor-binding pocket and an ordered fragment of a polyethylene glycol molecule bound in the substrate tunnel. These data show that cofactor selectivity is governed by a complex network of hydrogen bonds between the oxygen atoms of the 2'-phosphoryl moiety of NADP(+) and a threonine/lysine pair on ALDH(C). The catalytic preference of ALDH(C) for linear longer-chain substrates is mediated by a deep narrow configuration of the substrate tunnel. Comparative analysis reveals that reorientation of an extended loop (Asn478-Pro490) in ALDH(C) induces the constricted structure of the substrate tunnel, with the side chain of Asn478 imposing steric restrictions on branched-chain and aromatic aldehydes. Furthermore, a key glycine (Gly104) positioned at the mouth of the tunnel allows for maximum tunnel depth required to bind medium-chain to long-chain aldehydes. This study provides the first integrated biochemical and structural characterization of a box-pathway-encoded ALDH from any organism and offers insight into the catalytic role of ALDH(C) in benzoate degradation.
Collapse
Affiliation(s)
- Jasleen Bains
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada
| | | |
Collapse
|
53
|
Purification and characterization of a dehydrogenase catalyzing conversion of N alpha-benzyloxycarbonyl-L-aminoadipic-delta-semialdehyde to N alpha-benzyloxycarbonyl-L-aminoadipic acid from rhodococcus sp. AIU Z-35-1. J Biosci Bioeng 2008; 104:398-402. [PMID: 18086440 DOI: 10.1263/jbb.104.398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/06/2007] [Indexed: 11/17/2022]
Abstract
The enzyme catalyzing conversion of N alpha-benzyloxycarbonyl-L-aminoadipic-delta-semialdehyde (N alpha-Z-L-AASA) to N alpha-benzyloxycarbonyl-L-aminoadipic acid (N alpha-Z-L-AAA) in Rhodococcus sp. AIU Z-35-1 was identified, and its characteristics were revealed. This reaction was catalyzed by a dehydrogenase with a molecular mass of 59 kDa. The dehydrogenase exhibited enzyme activity on not only N alpha-Z-L-AASA but also N alpha-Z-D-AASA and short chain aliphatic aldehydes, but not on aromatic aldehydes and alcohols. The apparent Km values for N alpha-Z-L-AASA, N alpha-Z-D-AASA and NAD+ were estimated to be 3.8 mM, 14.1 mM and 0.16 mM, respectively. The NH2 terminal amino acid sequence of this enzyme exhibited a similarity to those of a piperidein-6-carboxylate dehydrogenase from Streptomyces clavuligerus and a putative dehydrogenase from Rhodococcus sp. RHA 1, but not to those of other microbial aldehyde dehydrogenases.
Collapse
|
54
|
Rodríguez-Zavala JS. Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase. Protein Sci 2008; 17:563-70. [PMID: 18218709 DOI: 10.1110/ps.073277108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phenylacetaldehyde dehydrogenase (PAD) and lactaldehyde dehydrogenase (ALD) share some structural and kinetic properties. One difference is that PAD can use NAD+ and NADP+, whereas ALD only uses NAD+. An acidic residue has been involved in the exclusion of NADP+ from the active site in pyridine nucleotide-dependent dehydrogenases. However, other factors may participate in NADP+ exclusion. In the present work, analysis of the sequence of the region involved in coenzyme binding showed that residue F180 of ALD might participate in coenzyme specificity. Interestingly, F180T mutation rendered an enzyme (ALD-F180T) with the ability to use NADP+. This enzyme showed an activity of 0.87 micromol/(min * mg) and K(m) for NADP+ of 78 microM. Furthermore, ALD-F180T exhibited a 16-fold increase in the V(m) /K(m) ratio with NAD+ as the coenzyme, from 12.8 to 211. This increase in catalytic efficiency was due to a diminution in K(m) for NAD+ from 47 to 7 microM and a higher V(m) from 0.51 to 1.48 micromol/(min * mg). In addition, an increased K(d) for NADH from 175 (wild-type) to 460 microM (mutant) indicates a faster product release and possibly a change in the rate-limiting step. For wild-type ALD it is described that the rate-limiting step is shared between deacylation and coenzyme dissociation. In contrast, in the present report the rate-limiting step in ALD-F180T was determined to be exclusively deacylation. In conclusion, residue F180 participates in the exclusion of NADP+ from the coenzyme binding site and disturbs the binding of NAD+.
Collapse
|
55
|
Gand A, Antoine M, Boschi-Muller S, Branlant G. Characterization of the Amino Acids Involved in Substrate Specificity of Methionine Sulfoxide Reductase A. J Biol Chem 2007; 282:20484-91. [PMID: 17500063 DOI: 10.1074/jbc.m702350200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine sulfoxide reductases (Msrs) are ubiquitous enzymes that catalyze the thioredoxin-dependent reduction of methionine sulfoxide (MetSO) back to methionine. In vivo, Msrs are essential in protecting cells against oxidative damages on proteins and in the virulence of some bacteria. There exists two structurally unrelated classes of Msrs. MsrAs are stereo-specific toward the S epimer on the sulfur of the sulfoxide, whereas MsrBs are specific toward the R isomer. Both classes of Msrs display a similar catalytic mechanism of sulfoxide reduction by thiols via the sulfenic acid chemistry and a better affinity for protein-bound MetSO than for free MetSO. Recently, the role of the amino acids implicated in the catalysis of the reductase step of Neisseria meningitidis MsrA was determined. In the present study, the invariant amino acids potentially involved in substrate binding, i.e. Phe-52, Trp-53, Asp-129, His-186, Tyr-189, and Tyr-197, were substituted. The catalytic parameters under steady-state conditions and of the reductase step of the mutated MsrAs were determined and compared with those of the wild type. Altogether, the results support the presence of at least two binding subsites. The first one, whose contribution is major in the efficiency of the reductase step and in which the epsilon-methyl group of MetSO binds, is the hydrophobic pocket formed by Phe-52 and Trp-53, the position of the indole ring being stabilized by interactions with His-186 and Tyr-189. The second subsite composed of Asp-129 and Tyr-197 contributes to the binding of the main chain of the substrate but to a lesser extent.
Collapse
Affiliation(s)
- Adeline Gand
- Maturation des ARN et Enzymologie Moléculaire, Unité Mixte de Recherche CNRS-UHP 7567, Nancy Université, Faculté des Sciences et Techniques, Bld. des Aiguillettes, BP 239, 54506 Vandoeuvre-les-Nancy, France
| | | | | | | |
Collapse
|
56
|
Tsybovsky Y, Donato H, Krupenko NI, Davies C, Krupenko SA. Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: implications for the catalytic mechanism of aldehyde dehydrogenases. Biochemistry 2007; 46:2917-29. [PMID: 17302434 DOI: 10.1021/bi0619573] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
10-Formyltetrahydrofolate dehydrogenase (FDH) catalyzes an NADP+-dependent dehydrogenase reaction resulting in conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. This reaction is a result of the concerted action of two catalytic domains of FDH, the amino-terminal hydrolase domain and the carboxyl-terminal aldehyde dehydrogenase domain. In addition to participation in the overall FDH mechanism, the C-terminal domain is capable of NADP+-dependent oxidation of short chain aldehydes to their corresponding acids. We have determined the crystal structure of the C-terminal domain of FDH and its complexes with oxidized and reduced forms of NADP. Compared to other members of the ALDH family, FDH demonstrates a new mode of binding of the 2'-phosphate group of NADP via a water-mediated contact with Gln600 that may contribute to the specificity of the enzyme for NADP over NAD. The structures also suggest how Glu673 can act as a general base in both acylation and deacylation steps of the reaction. In the apo structure, the general base Glu673 is positioned optimally for proton abstraction from the sulfur atom of Cys707. Upon binding of NADP+, the side chain of Glu673 is displaced from the active site by the nicotinamide ring and contacts a chain of highly ordered water molecules that may represent a pathway for translocation of the abstracted proton from Glu673 to the solvent. When reduced, the nicotinamide ring of NADP is displaced from the active site, restoring the contact between Cys707 and Glu673 and allowing the latter to activate the hydrolytic water molecule in deacylation.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
57
|
Di Costanzo L, Gomez GA, Christianson DW. Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. J Mol Biol 2006; 366:481-93. [PMID: 17173928 PMCID: PMC1866264 DOI: 10.1016/j.jmb.2006.11.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/03/2006] [Accepted: 11/04/2006] [Indexed: 11/18/2022]
Abstract
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (</=5%) side-product subsequent to its unexpected crystallization. Accordingly, we now report the serendipitous crystal structure determination of unliganded lactaldehyde dehydrogenase from E. coli determined by the technique of multiple isomorphous replacement using anomalous scattering at 2.2 A resolution. Additionally, we report the crystal structure of the ternary enzyme complex with products lactate and NADH at 2.1 A resolution, and the crystal structure of the enzyme complex with NADPH at 2.7 A resolution. The structure of the ternary complex reveals that the nicotinamide ring of the cofactor is disordered between two conformations: one with the ring positioned in the active site in the so-called hydrolysis conformation, and another with the ring extended out of the active site into the solvent region, designated the out conformation. This represents the first crystal structure of an aldehyde dehydrogenase-product complex. The active site pocket in which lactate binds is more constricted than that of medium-chain dehydrogenases such as the YdcW gene product of E. coli. The structure of the binary complex with NADPH reveals the first view of the structural basis of specificity for NADH: the negatively charged carboxylate group of E179 destabilizes the binding of the 2'-phosphate group of NADPH sterically and electrostatically, thereby accounting for the lack of enzyme activity with this cofactor.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | |
Collapse
|
58
|
Abstract
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigakukatsura, Saikyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
59
|
Rodríguez-Zavala JS, Allali-Hassani A, Weiner H. Characterization of E. coli tetrameric aldehyde dehydrogenases with atypical properties compared to other aldehyde dehydrogenases. Protein Sci 2006; 15:1387-96. [PMID: 16731973 PMCID: PMC2242541 DOI: 10.1110/ps.052039606] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aldehyde dehydrogenases are general detoxifying enzymes, but there are also isoenzymes that are involved in specific metabolic pathways in different organisms. Two of these enzymes are Escherichia coli lactaldehyde (ALD) and phenylacetaldehyde dehydrogenases (PAD), which participate in the metabolism of fucose and phenylalanine, respectively. These isozymes share some properties with the better characterized mammalian enzymes but have kinetic properties that are unique. It was possible to thread the sequences into the known ones for the mammalian isozymes to better understand some structural differences. Both isozymes were homotetramers, but PAD used both NAD+ and NADP+ but with a clear preference for NAD, while ALD used only NAD+. The rate-limiting step for PAD was hydride transfer as indicated by the primary isotopic effect and the absence of a pre-steady-state burst, something not previously found for tetrameric enzymes from other organisms where the rate-limiting step is related to both deacylation and coenzyme dissociation. In contrast, ALD had a pre-steady-state burst indicating that the rate-limiting step was located after the NADH formation, but the rate-limiting step was a combination of deacylation and coenzyme dissociation. Both enzymes possessed esterase activity that was stimulated by NADH; NAD+ stimulated the esterase activity of PAD but not of ALD. Finding enzymes that structurally are similar to the well-characterized mammalian enzymes but have a different rate-limiting step might serve as models to allow us to determine what regulates the rate-limiting step.
Collapse
|
60
|
Kouzuma A, Pinyakong O, Nojiri H, Omori T, Yamane H, Habe H. Functional and transcriptional analyses of the initial oxygenase genes for acenaphthene degradation from Sphingomonas sp. strain A4. Microbiology (Reading) 2006; 152:2455-2467. [PMID: 16849808 DOI: 10.1099/mic.0.28825-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingomonas sp. strain A4 is capable of utilizing acenaphthene as its sole carbon and energy source. To isolate the genes responsible for acenaphthene degradation, transposon mutagenesis was performed on strain A4 and four mini-Tn5-inserted mutants lacking the ability to utilize acenaphthene were isolated. In three of the four mini-Tn5 inserted mutants, the mini-Tn5s were inserted into the same locus (within about 16 kb) as the arhA1A2 genes, which had previously been identified as the genes encoding the terminal oxygenase components for the initial oxygenation of acenaphthene. The nucleotide sequence analysis of the corresponding 16.4 kb DNA fragment revealed the existence of 16 ORFs and a partial ORF. From these ORFs, the genes encoding the ferredoxin (ArhA3) and ferredoxin reductase (ArhA4) complementary to ArhA1A2 were identified. RT-PCR analysis suggested that a 13.5 kb gene cluster, consisting of 13 ORFs and including all the arhA genes, forms an operon, although it includes several ORFs that are apparently unnecessary for acenaphthene degradation. Furthermore, using gene disruption and quantitative RT-PCR analyses, the LysR-type activator, ArhR, required for expression of the 13.5 kb gene cluster was also identified. Transcription of the gene cluster by ArhR was induced in the presence of acenaphthene (or its metabolite), and a putative binding site (T-N11-A motif) for ArhR was found upstream from the transcription start point of arhA3.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Omori
- Department of Industrial Chemistry, Faculty of Engineering, Shibaura Institute of Technology, 3-9-14 Shibaura, Minato-ku, Tokyo 108-8548, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroshi Habe
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
61
|
Jung J, Lee S. Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem J 2006; 397:131-8. [PMID: 16566751 PMCID: PMC1479753 DOI: 10.1042/bj20051763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 03/13/2006] [Accepted: 03/27/2006] [Indexed: 01/03/2023]
Abstract
Thermoacidophilic archaea such as Thermoplasma acidophilum and Sulfolobus solfataricus are known to metabolize D-glucose via the nED (non-phosphorylated Entner-Doudoroff) pathway. In the present study, we identified and characterized a glyceraldehyde dehydrogenase involved in the downstream portion of the nED pathway. This glyceraldehyde dehydrogenase was purified from T. acidophilum cell extracts by sequential chromatography on DEAE-Sepharose, Q-Sepharose, Phenyl-Sepharose and Affi-Gel Blue columns. SDS/PAGE of the purified enzyme showed a molecular mass of approx. 53 kDa, whereas the molecular mass of the native protein was 215 kDa, indicating that glyceraldehyde dehydrogenase is a tetrameric protein. By MALDI-TOF-MS (matrix-assisted laser-desorption ionization-time-of-flight MS) peptide fingerprinting of the purified protein, it was found that the gene product of Ta0809 in the T. acidophilum genome database corresponds to the purified glyceraldehyde dehydrogenase. The native enzyme showed the highest activity towards glyceraldehyde, but no activity towards aliphatic or aromatic aldehydes, and no activity when NAD+ was substituted for NADP+. Analysis of the amino acid sequence and enzyme inhibition studies indicated that this glyceraldehyde dehydrogenase belongs to the ALDH (aldehyde dehydrogenase) superfamily. BLAST searches showed that homologues of the Ta0809 protein are not present in the Sulfolobus genome. Possible differences between T. acidophilum (Euryarchaeota) and S. solfataricus (Crenarchaeaota) in terms of the glycolytic pathway are thus expected.
Collapse
Affiliation(s)
- Jin Hwa Jung
- *Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Korea
| | - Sun Bok Lee
- *Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Korea
- †Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Korea
| |
Collapse
|
62
|
González-Segura L, Velasco-García R, Rudiño-Piñera E, Mújica-Jiménez C, Muñoz-Clares RA. Site-directed mutagenesis and homology modeling indicate an important role of cysteine 439 in the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Biochimie 2005; 87:1056-64. [PMID: 16054744 DOI: 10.1016/j.biochi.2005.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 06/09/2005] [Indexed: 11/24/2022]
Abstract
Betaine aldehyde dehydrogenase (BADH) from the human pathogen Pseudomonas aeruginosa is a tetrameric enzyme that contains a catalytic Cys286 and three additional cysteine residues, Cys353, 377, and 439, per subunit. In the present study, we have investigated the role of the three non-essentials in enzyme activity and stability by homology modeling and site-directed mutagenesis. Cys353 and Cys377 are located at the protein surface with their sulfur atoms buried, while Cys439 is at the subunit interface between the monomers forming a dimeric pair. All three residues were individually mutated to alanine and Cys439 also to serine and valine. The five mutant proteins were expressed in Escherichia coli and purified to homogeneity. Their steady-state kinetics was not significantly affected, neither was their structure as indicated by circular dicroism spectropolarimetry, protein intrinsic fluorescence, and size-exclusion chromatography. However, stability was severely reduced in the Cys439 mutants particularly in C439S and C439V, which were inactive when expressed at 37 degrees C. They also exhibited higher sensitivity to thermal and chemical inactivation, and higher propensity to dissociation by dilution or exposure to low ionic strength than the wild-type enzyme. Size-exclusion chromatography indicates that substitution of Cys439 lead to unstable dimers or to stable dimeric conformations not compatible with a stable tetrameric structure. To the best of our knowledge, this is the first study of an aldehyde dehydrogenase revealing a residue at the dimer interface involved in holding the dimer, and consequently the tetramer, together.
Collapse
Affiliation(s)
- Lilian González-Segura
- Laboratorio de Osmorregulación, FES Iztacala, Av de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo México 54090, Mexico
| | | | | | | | | |
Collapse
|
63
|
Clark DP, Cronan JE. Two-Carbon Compounds and Fatty Acids as Carbon Sources. EcoSal Plus 2005; 1. [PMID: 26443509 DOI: 10.1128/ecosalplus.3.4.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 06/05/2023]
Abstract
This review concerns the uptake and degradation of those molecules that are wholly or largely converted to acetyl-coenzyme A (CoA) in the first stage of metabolism in Escherichia coli and Salmonella enterica. These include acetate, acetoacetate, butyrate and longer fatty acids in wild type cells plus ethanol and some longer alcohols in certain mutant strains. Entering metabolism as acetyl-CoA has two important general consequences. First, generation of energy from acetyl-CoA requires operation of both the citric acid cycle and the respiratory chain to oxidize the NADH produced. Hence, acetyl-CoA serves as an energy source only during aerobic growth or during anaerobic respiration with such alternative electron acceptors as nitrate or trimethylamine oxide. In the absence of a suitable oxidant, acetyl-CoA is converted to a mixture of acetic acid and ethanol by the pathways of anaerobic fermentation. Catabolism of acetyl-CoA via the citric acid cycle releases both carbon atoms of the acetyl moiety as carbon dioxide and growth on these substrates as sole carbon source therefore requires the operation of the glyoxylate bypass to generate cell material. The pair of related two-carbon compounds, glycolate and glyoxylate are also discussed. However, despite having two carbons, these are metabolized via malate and glycerate, not via acetyl-CoA. In addition, mutants of E. coli capable of growth on ethylene glycol metabolize it via the glycolate pathway, rather than via acetyl- CoA. Propionate metabolism is also discussed because in many respects its pathway is analogous to that of acetate. The transcriptional regulation of these pathways is discussed in detail.
Collapse
Affiliation(s)
- David P Clark
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901
| | - John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, B103 CLSL, 601 S. Goodwin Avenue, Urbana, Illinois 61801
| |
Collapse
|
64
|
Samsonova NN, Smirnov SV, Novikova AE, Ptitsyn LR. Identification ofEscherichia coliK12 YdcW protein as a γ-aminobutyraldehyde dehydrogenase. FEBS Lett 2005; 579:4107-12. [PMID: 16023116 DOI: 10.1016/j.febslet.2005.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/17/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
Gamma-aminobutyraldehyde dehydrogenase (ABALDH) from wild-type E. coli K12 was purified to apparent homogeneity and identified as YdcW by MS-analysis. YdcW exists as a tetramer of 202+/-29 kDa in the native state, a molecular mass of one subunit was determined as 51+/-3 kDa. Km parameters of YdcW for gamma-aminobutyraldehyde, NAD+ and NADP+ were 41+/-7, 54+/-10 and 484+/-72 microM, respectively. YdcW is the unique ABALDH in E. coli K12. A coupling action of E. coli YgjG putrescine transaminase and YdcW dehydrogenase in vitro resulted in conversion of putrescine into gamma-aminobutyric acid.
Collapse
Affiliation(s)
- Natalya N Samsonova
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr. 1, Moscow 117545, Russia.
| | | | | | | |
Collapse
|